/*
* Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/adaptiveSizePolicy.hpp"
#include "gc/shared/gcCause.hpp"
#include "gc/shared/gcUtil.inline.hpp"
#include "logging/log.hpp"
#include "runtime/timer.hpp"
elapsedTimer AdaptiveSizePolicy::_minor_timer;
elapsedTimer AdaptiveSizePolicy::_major_timer;
// The throughput goal is implemented as
// _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio))
// gc_cost_ratio is the ratio
// application cost / gc cost
// For example a gc_cost_ratio of 4 translates into a
// throughput goal of .80
AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
size_t init_promo_size,
size_t init_survivor_size,
double gc_pause_goal_sec,
uint gc_cost_ratio) :
_throughput_goal(1.0 - double(1.0 / (1.0 + (double) gc_cost_ratio))),
_eden_size(init_eden_size),
_promo_size(init_promo_size),
_survivor_size(init_survivor_size),
_avg_minor_pause(new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding)),
_avg_minor_interval(new AdaptiveWeightedAverage(AdaptiveTimeWeight)),
_avg_minor_gc_cost(new AdaptiveWeightedAverage(AdaptiveTimeWeight)),
_avg_major_interval(new AdaptiveWeightedAverage(AdaptiveTimeWeight)),
_avg_major_gc_cost(new AdaptiveWeightedAverage(AdaptiveTimeWeight)),
_avg_young_live(new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight)),
_avg_eden_live(new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight)),
_avg_old_live(new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight)),
_avg_survived(new AdaptivePaddedAverage(AdaptiveSizePolicyWeight, SurvivorPadding)),
_avg_pretenured(new AdaptivePaddedNoZeroDevAverage(AdaptiveSizePolicyWeight, SurvivorPadding)),
_minor_pause_old_estimator(new LinearLeastSquareFit(AdaptiveSizePolicyWeight)),
_minor_pause_young_estimator(new LinearLeastSquareFit(AdaptiveSizePolicyWeight)),
_minor_collection_estimator(new LinearLeastSquareFit(AdaptiveSizePolicyWeight)),
_major_collection_estimator(new LinearLeastSquareFit(AdaptiveSizePolicyWeight)),
_latest_minor_mutator_interval_seconds(0),
_threshold_tolerance_percent(1.0 + ThresholdTolerance/100.0),
_gc_pause_goal_sec(gc_pause_goal_sec),
_young_gen_policy_is_ready(false),
_change_young_gen_for_min_pauses(0),
_change_old_gen_for_maj_pauses(0),
_change_old_gen_for_throughput(0),
_change_young_gen_for_throughput(0),
_increment_tenuring_threshold_for_gc_cost(false),
_decrement_tenuring_threshold_for_gc_cost(false),
_decrement_tenuring_threshold_for_survivor_limit(false),
_decrease_for_footprint(0),
_decide_at_full_gc(0),
_young_gen_change_for_minor_throughput(0),
_old_gen_change_for_major_throughput(0) {
// Start the timers
_minor_timer.start();
}
bool AdaptiveSizePolicy::tenuring_threshold_change() const {
return decrement_tenuring_threshold_for_gc_cost() ||
increment_tenuring_threshold_for_gc_cost() ||
decrement_tenuring_threshold_for_survivor_limit();
}
void AdaptiveSizePolicy::minor_collection_begin() {
// Update the interval time
_minor_timer.stop();
// Save most recent collection time
_latest_minor_mutator_interval_seconds = _minor_timer.seconds();
_minor_timer.reset();
_minor_timer.start();
}
void AdaptiveSizePolicy::update_minor_pause_young_estimator(
double minor_pause_in_ms) {
double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
_minor_pause_young_estimator->update(eden_size_in_mbytes,
minor_pause_in_ms);
}
void AdaptiveSizePolicy::minor_collection_end(GCCause::Cause gc_cause) {
// Update the pause time.
_minor_timer.stop();
if (!GCCause::is_user_requested_gc(gc_cause) ||
UseAdaptiveSizePolicyWithSystemGC) {
double minor_pause_in_seconds = _minor_timer.seconds();
double minor_pause_in_ms = minor_pause_in_seconds * MILLIUNITS;
// Sample for performance counter
_avg_minor_pause->sample(minor_pause_in_seconds);
// Cost of collection (unit-less)
double collection_cost = 0.0;
if ((_latest_minor_mutator_interval_seconds > 0.0) &&
(minor_pause_in_seconds > 0.0)) {
double interval_in_seconds =
_latest_minor_mutator_interval_seconds + minor_pause_in_seconds;
collection_cost =
minor_pause_in_seconds / interval_in_seconds;
_avg_minor_gc_cost->sample(collection_cost);
// Sample for performance counter
_avg_minor_interval->sample(interval_in_seconds);
}
// The policy does not have enough data until at least some
// young collections have been done.
_young_gen_policy_is_ready =
(_avg_minor_gc_cost->count() >= AdaptiveSizePolicyReadyThreshold);
// Calculate variables used to estimate pause time vs. gen sizes
double eden_size_in_mbytes = ((double)_eden_size) / ((double)M);
update_minor_pause_young_estimator(minor_pause_in_ms);
update_minor_pause_old_estimator(minor_pause_in_ms);
log_trace(gc, ergo)("AdaptiveSizePolicy::minor_collection_end: minor gc cost: %f average: %f",
collection_cost, _avg_minor_gc_cost->average());
log_trace(gc, ergo)(" minor pause: %f minor period %f",
minor_pause_in_ms, _latest_minor_mutator_interval_seconds * MILLIUNITS);
// Calculate variable used to estimate collection cost vs. gen sizes
assert(collection_cost >= 0.0, "Expected to be non-negative");
_minor_collection_estimator->update(eden_size_in_mbytes, collection_cost);
}
// Interval times use this timer to measure the mutator time.
// Reset the timer after the GC pause.
_minor_timer.reset();
_minor_timer.start();
}
size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden, uint percent_change) {
size_t eden_heap_delta;
eden_heap_delta = cur_eden / 100 * percent_change;
return eden_heap_delta;
}
size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden) {
return eden_increment(cur_eden, YoungGenerationSizeIncrement);
}
size_t AdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
size_t eden_heap_delta = eden_increment(cur_eden) /
AdaptiveSizeDecrementScaleFactor;
return eden_heap_delta;
}
size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo, uint percent_change) {
size_t promo_heap_delta;
promo_heap_delta = cur_promo / 100 * percent_change;
return promo_heap_delta;
}
size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo) {
return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
}
size_t AdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
size_t promo_heap_delta = promo_increment(cur_promo);
promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
return promo_heap_delta;
}
double AdaptiveSizePolicy::time_since_major_gc() const {
_major_timer.stop();
double result = _major_timer.seconds();
_major_timer.start();
return result;
}
// Linear decay of major gc cost
double AdaptiveSizePolicy::decaying_major_gc_cost() const {
double major_interval = major_gc_interval_average_for_decay();
double major_gc_cost_average = major_gc_cost();
double decayed_major_gc_cost = major_gc_cost_average;
if(time_since_major_gc() > 0.0) {
decayed_major_gc_cost = major_gc_cost() *
(((double) AdaptiveSizeMajorGCDecayTimeScale) * major_interval)
/ time_since_major_gc();
}
// The decayed cost should always be smaller than the
// average cost but the vagaries of finite arithmetic could
// produce a larger value in decayed_major_gc_cost so protect
// against that.
return MIN2(major_gc_cost_average, decayed_major_gc_cost);
}
// Use a value of the major gc cost that has been decayed
// by the factor
//
// average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale /
// time-since-last-major-gc
//
// if the average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale
// is less than time-since-last-major-gc.
//
// In cases where there are initial major gc's that
// are of a relatively high cost but no later major
// gc's, the total gc cost can remain high because
// the major gc cost remains unchanged (since there are no major
// gc's). In such a situation the value of the unchanging
// major gc cost can keep the mutator throughput below
// the goal when in fact the major gc cost is becoming diminishingly
// small. Use the decaying gc cost only to decide whether to
// adjust for throughput. Using it also to determine the adjustment
// to be made for throughput also seems reasonable but there is
// no test case to use to decide if it is the right thing to do
// don't do it yet.
double AdaptiveSizePolicy::decaying_gc_cost() const {
double decayed_major_gc_cost = major_gc_cost();
double avg_major_interval = major_gc_interval_average_for_decay();
if (UseAdaptiveSizeDecayMajorGCCost &&
(AdaptiveSizeMajorGCDecayTimeScale > 0) &&
(avg_major_interval > 0.00)) {
double time_since_last_major_gc = time_since_major_gc();
// Decay the major gc cost?
if (time_since_last_major_gc >
((double) AdaptiveSizeMajorGCDecayTimeScale) * avg_major_interval) {
// Decay using the time-since-last-major-gc
decayed_major_gc_cost = decaying_major_gc_cost();
log_trace(gc, ergo)("decaying_gc_cost: major interval average: %f time since last major gc: %f",
avg_major_interval, time_since_last_major_gc);
log_trace(gc, ergo)(" major gc cost: %f decayed major gc cost: %f",
major_gc_cost(), decayed_major_gc_cost);
}
}
double result = MIN2(1.0, decayed_major_gc_cost + minor_gc_cost());
return result;
}
void AdaptiveSizePolicy::clear_generation_free_space_flags() {
set_change_young_gen_for_min_pauses(0);
set_change_old_gen_for_maj_pauses(0);
set_change_old_gen_for_throughput(0);
set_change_young_gen_for_throughput(0);
set_decrease_for_footprint(0);
set_decide_at_full_gc(0);
}
class AdaptiveSizePolicyTimeOverheadTester: public GCOverheadTester {
double _gc_cost;
public:
AdaptiveSizePolicyTimeOverheadTester(double gc_cost) : _gc_cost(gc_cost) {}
bool is_exceeded() {
return _gc_cost > (GCTimeLimit / 100.0);
}
};
class AdaptiveSizePolicySpaceOverheadTester: public GCOverheadTester {
size_t _eden_live;
size_t _max_old_gen_size;
size_t _max_eden_size;
size_t _promo_size;
double _avg_eden_live;
double _avg_old_live;
public:
AdaptiveSizePolicySpaceOverheadTester(size_t eden_live,
size_t max_old_gen_size,
size_t max_eden_size,
size_t promo_size,
double avg_eden_live,
double avg_old_live) :
_eden_live(eden_live),
_max_old_gen_size(max_old_gen_size),
_max_eden_size(max_eden_size),
_promo_size(promo_size),
_avg_eden_live(avg_eden_live),
_avg_old_live(avg_old_live) {}
bool is_exceeded() {
// _max_eden_size is the upper limit on the size of eden based on
// the maximum size of the young generation and the sizes
// of the survivor space.
// The question being asked is whether the space being recovered by
// a collection is low.
// free_in_eden is the free space in eden after a collection and
// free_in_old_gen is the free space in the old generation after
// a collection.
//
// Use the minimum of the current value of the live in eden
// or the average of the live in eden.
// If the current value drops quickly, that should be taken
// into account (i.e., don't trigger if the amount of free
// space has suddenly jumped up). If the current is much
// higher than the average, use the average since it represents
// the longer term behavior.
const size_t live_in_eden =
MIN2(_eden_live, (size_t)_avg_eden_live);
const size_t free_in_eden = _max_eden_size > live_in_eden ?
_max_eden_size - live_in_eden : 0;
const size_t free_in_old_gen = (size_t)(_max_old_gen_size - _avg_old_live);
const size_t total_free_limit = free_in_old_gen + free_in_eden;
const size_t total_mem = _max_old_gen_size + _max_eden_size;
const double free_limit_ratio = GCHeapFreeLimit / 100.0;
const double mem_free_limit = total_mem * free_limit_ratio;
const double mem_free_old_limit = _max_old_gen_size * free_limit_ratio;
const double mem_free_eden_limit = _max_eden_size * free_limit_ratio;
size_t promo_limit = (size_t)(_max_old_gen_size - _avg_old_live);
// But don't force a promo size below the current promo size. Otherwise,
// the promo size will shrink for no good reason.
promo_limit = MAX2(promo_limit, _promo_size);
log_trace(gc, ergo)(
"AdaptiveSizePolicySpaceOverheadTester::is_exceeded:"
" promo_limit: " SIZE_FORMAT
" max_eden_size: " SIZE_FORMAT
" total_free_limit: " SIZE_FORMAT
" max_old_gen_size: " SIZE_FORMAT
" max_eden_size: " SIZE_FORMAT
" mem_free_limit: " SIZE_FORMAT,
promo_limit, _max_eden_size, total_free_limit,
_max_old_gen_size, _max_eden_size,
(size_t)mem_free_limit);
return free_in_old_gen < (size_t)mem_free_old_limit &&
free_in_eden < (size_t)mem_free_eden_limit;
}
};
void AdaptiveSizePolicy::check_gc_overhead_limit(
size_t eden_live,
size_t max_old_gen_size,
size_t max_eden_size,
bool is_full_gc,
GCCause::Cause gc_cause,
SoftRefPolicy* soft_ref_policy) {
AdaptiveSizePolicyTimeOverheadTester time_overhead(gc_cost());
AdaptiveSizePolicySpaceOverheadTester space_overhead(eden_live,
max_old_gen_size,
max_eden_size,
_promo_size,
avg_eden_live()->average(),
avg_old_live()->average());
_overhead_checker.check_gc_overhead_limit(&time_overhead,
&space_overhead,
is_full_gc,
gc_cause,
soft_ref_policy);
}
// Printing
bool AdaptiveSizePolicy::print() const {
assert(UseAdaptiveSizePolicy, "UseAdaptiveSizePolicy need to be enabled.");
if (!log_is_enabled(Debug, gc, ergo)) {
return false;
}
// Print goal for which action is needed.
char* action = NULL;
bool change_for_pause = false;
if ((change_old_gen_for_maj_pauses() ==
decrease_old_gen_for_maj_pauses_true) ||
(change_young_gen_for_min_pauses() ==
decrease_young_gen_for_min_pauses_true)) {
action = (char*) " *** pause time goal ***";
change_for_pause = true;
} else if ((change_old_gen_for_throughput() ==
increase_old_gen_for_throughput_true) ||
(change_young_gen_for_throughput() ==
increase_young_gen_for_througput_true)) {
action = (char*) " *** throughput goal ***";
} else if (decrease_for_footprint()) {
action = (char*) " *** reduced footprint ***";
} else {
// No actions were taken. This can legitimately be the
// situation if not enough data has been gathered to make
// decisions.
return false;
}
// Pauses
// Currently the size of the old gen is only adjusted to
// change the major pause times.
char* young_gen_action = NULL;
char* tenured_gen_action = NULL;
char* shrink_msg = (char*) "(attempted to shrink)";
char* grow_msg = (char*) "(attempted to grow)";
char* no_change_msg = (char*) "(no change)";
if (change_young_gen_for_min_pauses() ==
decrease_young_gen_for_min_pauses_true) {
young_gen_action = shrink_msg;
} else if (change_for_pause) {
young_gen_action = no_change_msg;
}
if (change_old_gen_for_maj_pauses() == decrease_old_gen_for_maj_pauses_true) {
tenured_gen_action = shrink_msg;
} else if (change_for_pause) {
tenured_gen_action = no_change_msg;
}
// Throughput
/**代码未完, 请加载全部代码(NowJava.com).**/