/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/parallel/mutableNUMASpace.hpp"
#include "gc/parallel/parallelScavengeHeap.hpp"
#include "gc/parallel/psMarkSweepDecorator.hpp"
#include "gc/parallel/psScavenge.hpp"
#include "gc/parallel/psYoungGen.hpp"
#include "gc/shared/gcUtil.hpp"
#include "gc/shared/genArguments.hpp"
#include "gc/shared/spaceDecorator.inline.hpp"
#include "logging/log.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/java.hpp"
#include "utilities/align.hpp"
PSYoungGen::PSYoungGen(size_t initial_size, size_t min_size, size_t max_size) :
_reserved(),
_virtual_space(NULL),
_eden_space(NULL),
_from_space(NULL),
_to_space(NULL),
_eden_mark_sweep(NULL),
_from_mark_sweep(NULL),
_to_mark_sweep(NULL),
_init_gen_size(initial_size),
_min_gen_size(min_size),
_max_gen_size(max_size),
_gen_counters(NULL),
_eden_counters(NULL),
_from_counters(NULL),
_to_counters(NULL)
{}
void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
assert(_init_gen_size != 0, "Should have a finite size");
_virtual_space = new PSVirtualSpace(rs, alignment);
if (!virtual_space()->expand_by(_init_gen_size)) {
vm_exit_during_initialization("Could not reserve enough space for "
"object heap");
}
}
void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
initialize_virtual_space(rs, alignment);
initialize_work();
}
void PSYoungGen::initialize_work() {
_reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
(HeapWord*)virtual_space()->high_boundary());
MemRegion cmr((HeapWord*)virtual_space()->low(),
(HeapWord*)virtual_space()->high());
ParallelScavengeHeap::heap()->card_table()->resize_covered_region(cmr);
if (ZapUnusedHeapArea) {
// Mangle newly committed space immediately because it
// can be done here more simply that after the new
// spaces have been computed.
SpaceMangler::mangle_region(cmr);
}
if (UseNUMA) {
_eden_space = new MutableNUMASpace(virtual_space()->alignment());
} else {
_eden_space = new MutableSpace(virtual_space()->alignment());
}
_from_space = new MutableSpace(virtual_space()->alignment());
_to_space = new MutableSpace(virtual_space()->alignment());
if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
vm_exit_during_initialization("Could not allocate a young gen space");
}
// Allocate the mark sweep views of spaces
_eden_mark_sweep =
new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
_from_mark_sweep =
new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
_to_mark_sweep =
new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
if (_eden_mark_sweep == NULL ||
_from_mark_sweep == NULL ||
_to_mark_sweep == NULL) {
vm_exit_during_initialization("Could not complete allocation"
" of the young generation");
}
// Generation Counters - generation 0, 3 subspaces
_gen_counters = new PSGenerationCounters("new", 0, 3, _min_gen_size,
_max_gen_size, _virtual_space);
// Compute maximum space sizes for performance counters
size_t alignment = SpaceAlignment;
size_t size = virtual_space()->reserved_size();
size_t max_survivor_size;
size_t max_eden_size;
if (UseAdaptiveSizePolicy) {
max_survivor_size = size / MinSurvivorRatio;
// round the survivor space size down to the nearest alignment
// and make sure its size is greater than 0.
max_survivor_size = align_down(max_survivor_size, alignment);
max_survivor_size = MAX2(max_survivor_size, alignment);
// set the maximum size of eden to be the size of the young gen
// less two times the minimum survivor size. The minimum survivor
// size for UseAdaptiveSizePolicy is one alignment.
max_eden_size = size - 2 * alignment;
} else {
max_survivor_size = size / InitialSurvivorRatio;
// round the survivor space size down to the nearest alignment
// and make sure its size is greater than 0.
max_survivor_size = align_down(max_survivor_size, alignment);
max_survivor_size = MAX2(max_survivor_size, alignment);
// set the maximum size of eden to be the size of the young gen
// less two times the survivor size when the generation is 100%
// committed. The minimum survivor size for -UseAdaptiveSizePolicy
// is dependent on the committed portion (current capacity) of the
// generation - the less space committed, the smaller the survivor
// space, possibly as small as an alignment. However, we are interested
// in the case where the young generation is 100% committed, as this
// is the point where eden reaches its maximum size. At this point,
// the size of a survivor space is max_survivor_size.
max_eden_size = size - 2 * max_survivor_size;
}
_eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
_gen_counters);
_from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
_gen_counters);
_to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
_gen_counters);
compute_initial_space_boundaries();
}
void PSYoungGen::compute_initial_space_boundaries() {
// Compute sizes
size_t size = virtual_space()->committed_size();
assert(size >= 3 * SpaceAlignment, "Young space is not large enough for eden + 2 survivors");
size_t survivor_size = size / InitialSurvivorRatio;
survivor_size = align_down(survivor_size, SpaceAlignment);
// ... but never less than an alignment
survivor_size = MAX2(survivor_size, SpaceAlignment);
// Young generation is eden + 2 survivor spaces
size_t eden_size = size - (2 * survivor_size);
// Now go ahead and set 'em.
set_space_boundaries(eden_size, survivor_size);
space_invariants();
if (UsePerfData) {
_eden_counters->update_capacity();
_from_counters->update_capacity();
_to_counters->update_capacity();
}
}
void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
assert(eden_size < virtual_space()->committed_size(), "just checking");
assert(eden_size > 0 && survivor_size > 0, "just checking");
// Initial layout is Eden, to, from. After swapping survivor spaces,
// that leaves us with Eden, from, to, which is step one in our two
// step resize-with-live-data procedure.
char *eden_start = virtual_space()->low();
char *to_start = eden_start + eden_size;
char *from_start = to_start + survivor_size;
char *from_end = from_start + survivor_size;
assert(from_end == virtual_space()->high(), "just checking");
assert(is_object_aligned(eden_start), "checking alignment");
assert(is_object_aligned(to_start), "checking alignment");
assert(is_object_aligned(from_start), "checking alignment");
MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
MemRegion to_mr ((HeapWord*)to_start, (HeapWord*)from_start);
MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
to_space()->initialize(to_mr , true, ZapUnusedHeapArea);
from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
}
#ifndef PRODUCT
void PSYoungGen::space_invariants() {
// Currently, our eden size cannot shrink to zero
guarantee(eden_space()->capacity_in_bytes() >= SpaceAlignment, "eden too small");
guarantee(from_space()->capacity_in_bytes() >= SpaceAlignment, "from too small");
guarantee(to_space()->capacity_in_bytes() >= SpaceAlignment, "to too small");
// Relationship of spaces to each other
char* eden_start = (char*)eden_space()->bottom();
char* eden_end = (char*)eden_space()->end();
char* from_start = (char*)from_space()->bottom();
char* from_end = (char*)from_space()->end();
char* to_start = (char*)to_space()->bottom();
char* to_end = (char*)to_space()->end();
guarantee(eden_start >= virtual_space()->low(), "eden bottom");
guarantee(eden_start < eden_end, "eden space consistency");
guarantee(from_start < from_end, "from space consistency");
guarantee(to_start < to_end, "to space consistency");
// Check whether from space is below to space
if (from_start < to_start) {
// Eden, from, to
guarantee(eden_end <= from_start, "eden/from boundary");
guarantee(from_end <= to_start, "from/to boundary");
guarantee(to_end <= virtual_space()->high(), "to end");
} else {
// Eden, to, from
guarantee(eden_end <= to_start, "eden/to boundary");
guarantee(to_end <= from_start, "to/from boundary");
guarantee(from_end <= virtual_space()->high(), "from end");
}
// More checks that the virtual space is consistent with the spaces
assert(virtual_space()->committed_size() >=
(eden_space()->capacity_in_bytes() +
to_space()->capacity_in_bytes() +
from_space()->capacity_in_bytes()), "Committed size is inconsistent");
assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
"Space invariant");
char* eden_top = (char*)eden_space()->top();
char* from_top = (char*)from_space()->top();
char* to_top = (char*)to_space()->top();
assert(eden_top <= virtual_space()->high(), "eden top");
assert(from_top <= virtual_space()->high(), "from top");
assert(to_top <= virtual_space()->high(), "to top");
virtual_space()->verify();
}
#endif
void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
// Resize the generation if needed. If the generation resize
// reports false, do not attempt to resize the spaces.
if (resize_generation(eden_size, survivor_size)) {
// Then we lay out the spaces inside the generation
resize_spaces(eden_size, survivor_size);
space_invariants();
log_trace(gc, ergo)("Young generation size: "
"desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
" used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
" gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
_max_gen_size, min_gen_size());
}
}
bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
const size_t alignment = virtual_space()->alignment();
size_t orig_size = virtual_space()->committed_size();
bool size_changed = false;
// There used to be this guarantee there.
// guarantee ((eden_size + 2*survivor_size) <= _max_gen_size, "incorrect input arguments");
// Code below forces this requirement. In addition the desired eden
// size and desired survivor sizes are desired goals and may
// exceed the total generation size.
assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
// Adjust new generation size
const size_t eden_plus_survivors =
align_up(eden_size + 2 * survivor_size, alignment);
size_t desired_size = clamp(eden_plus_survivors, min_gen_size(), max_size());
assert(desired_size <= max_size(), "just checking");
if (desired_size > orig_size) {
// Grow the generation
size_t change = desired_size - orig_size;
assert(change % alignment == 0, "just checking");
HeapWord* prev_high = (HeapWord*) virtual_space()->high();
if (!virtual_space()->expand_by(change)) {
return false; // Error if we fail to resize!
}
if (ZapUnusedHeapArea) {
// Mangle newly committed space immediately because it
// can be done here more simply that after the new
// spaces have been computed.
HeapWord* new_high = (HeapWord*) virtual_space()->high();
MemRegion mangle_region(prev_high, new_high);
SpaceMangler::mangle_region(mangle_region);
}
size_changed = true;
} else if (desired_size < orig_size) {
size_t desired_change = orig_size - desired_size;
assert(desired_change % alignment == 0, "just checking");
desired_change = limit_gen_shrink(desired_change);
if (desired_change > 0) {
virtual_space()->shrink_by(desired_change);
reset_survivors_after_shrink();
size_changed = true;
}
} else {
if (orig_size == gen_size_limit()) {
log_trace(gc)("PSYoung generation size at maximum: " SIZE_FORMAT "K", orig_size/K);
} else if (orig_size == min_gen_size()) {
log_trace(gc)("PSYoung generation size at minium: " SIZE_FORMAT "K", orig_size/K);
}
}
if (size_changed) {
post_resize();
log_trace(gc)("PSYoung generation size changed: " SIZE_FORMAT "K->" SIZE_FORMAT "K",
orig_size/K, virtual_space()->committed_size()/K);
}
guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
virtual_space()->committed_size() == max_size(), "Sanity");
return true;
}
#ifndef PRODUCT
// In the numa case eden is not mangled so a survivor space
// moving into a region previously occupied by a survivor
// may find an unmangled region. Also in the PS case eden
// to-space and from-space may not touch (i.e., there may be
// gaps between them due to movement while resizing the
// spaces). Those gaps must be mangled.
void PSYoungGen::mangle_survivors(MutableSpace* s1,
MemRegion s1MR,
MutableSpace* s2,
MemRegion s2MR) {
// Check eden and gap between eden and from-space, in deciding
// what to mangle in from-space. Check the gap between from-space
// and to-space when deciding what to mangle.
//
// +--------+ +----+ +---+
// | eden | |s1 | |s2 |
// +--------+ +----+ +---+
// +-------+ +-----+
// |s1MR | |s2MR |
// +-------+ +-----+
// All of survivor-space is properly mangled so find the
// upper bound on the mangling for any portion above current s1.
HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
MemRegion delta1_left;
if (s1MR.start() < delta_end) {
delta1_left = MemRegion(s1MR.start(), delta_end);
s1->mangle_region(delta1_left);
}
// Find any portion to the right of the current s1.
HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
MemRegion delta1_right;
if (delta_start < s1MR.end()) {
delta1_right = MemRegion(delta_start, s1MR.end());
s1->mangle_region(delta1_right);
}
// Similarly for the second survivor space except that
// any of the new region that overlaps with the current
// region of the first survivor space has already been
// mangled.
delta_end = MIN2(s2->bottom(), s2MR.end());
delta_start = MAX2(s2MR.start(), s1->end());
MemRegion delta2_left;
if (s2MR.start() < delta_end) {
delta2_left = MemRegion(s2MR.start(), delta_end);
s2->mangle_region(delta2_left);
}
delta_start = MAX2(s2->end(), s2MR.start());
MemRegion delta2_right;
if (delta_start < s2MR.end()) {
s2->mangle_region(delta2_right);
}
// s1
log_develop_trace(gc)("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
"New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(s1->bottom()), p2i(s1->end()),
p2i(s1MR.start()), p2i(s1MR.end()));
log_develop_trace(gc)(" Mangle before: [" PTR_FORMAT ", "
PTR_FORMAT ") Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(delta1_left.start()), p2i(delta1_left.end()),
p2i(delta1_right.start()), p2i(delta1_right.end()));
// s2
log_develop_trace(gc)("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
"New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(s2->bottom()), p2i(s2->end()),
p2i(s2MR.start()), p2i(s2MR.end()));
log_develop_trace(gc)(" Mangle before: [" PTR_FORMAT ", "
PTR_FORMAT ") Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(delta2_left.start()), p2i(delta2_left.end()),
p2i(delta2_right.start()), p2i(delta2_right.end()));
}
#endif // NOT PRODUCT
void PSYoungGen::resize_spaces(size_t requested_eden_size,
size_t requested_survivor_size) {
assert(UseAdaptiveSizePolicy, "sanity check");
assert(requested_eden_size > 0 && requested_survivor_size > 0,
"just checking");
// We require eden and to space to be empty
if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
return;
}
log_trace(gc, ergo)("PSYoungGen::resize_spaces(requested_eden_size: " SIZE_FORMAT ", requested_survivor_size: " SIZE_FORMAT ")",
requested_eden_size, requested_survivor_size);
log_trace(gc, ergo)(" eden: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
p2i(eden_space()->bottom()),
p2i(eden_space()->end()),
pointer_delta(eden_space()->end(),
eden_space()->bottom(),
sizeof(char)));
log_trace(gc, ergo)(" from: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
p2i(from_space()->bottom()),
p2i(from_space()->end()),
pointer_delta(from_space()->end(),
from_space()->bottom(),
sizeof(char)));
log_trace(gc, ergo)(" to: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
p2i(to_space()->bottom()),
p2i(to_space()->end()),
pointer_delta( to_space()->end(),
to_space()->bottom(),
sizeof(char)));
// There's nothing to do if the new sizes are the same as the current
if (requested_survivor_size == to_space()->capacity_in_bytes() &&
requested_survivor_size == from_space()->capacity_in_bytes() &&
requested_eden_size == eden_space()->capacity_in_bytes()) {
log_trace(gc, ergo)(" capacities are the right sizes, returning");
return;
}
char* eden_start = (char*)eden_space()->bottom();
char* eden_end = (char*)eden_space()->end();
char* from_start = (char*)from_space()->bottom();
char* from_end = (char*)from_space()->end();
char* to_start = (char*)to_space()->bottom();
char* to_end = (char*)to_space()->end();
const bool maintain_minimum =
(requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
bool eden_from_to_order = from_start < to_start;
// Check whether from space is below to space
if (eden_from_to_order) {
// Eden, from, to
eden_from_to_order = true;
log_trace(gc, ergo)(" Eden, from, to:");
// Set eden
// "requested_eden_size" is a goal for the size of eden
// and may not be attainable. "eden_size" below is
// calculated based on the location of from-space and
// the goal for the size of eden. from-space is
// fixed in place because it contains live data.
// The calculation is done this way to avoid 32bit
// overflow (i.e., eden_start + requested_eden_size
// may too large for representation in 32bits).
size_t eden_size;
if (maintain_minimum) {
// Only make eden larger than the requested size if
// the minimum size of the generation has to be maintained.
// This could be done in general but policy at a higher
// level is determining a requested size for eden and that
// should be honored unless there is a fundamental reason.
eden_size = pointer_delta(from_start,
eden_start,
sizeof(char));
} else {
eden_size = MIN2(requested_eden_size,
pointer_delta(from_start, eden_start, sizeof(char)));
}
eden_end = eden_start + eden_size;
assert(eden_end >= eden_start, "addition overflowed");
// To may resize into from space as long as it is clear of live data.
// From space must remain page aligned, though, so we need to do some
// extra calculations.
// First calculate an optimal to-space
to_end = (char*)virtual_space()->high();
to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
sizeof(char));
// Does the optimal to-space overlap from-space?
if (to_start < (char*)from_space()->end()) {
// Calculate the minimum offset possible for from_end
size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
// Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
if (from_size == 0) {
from_size = SpaceAlignment;
} else {
from_size = align_up(from_size, SpaceAlignment);
}
from_end = from_start + from_size;
assert(from_end > from_start, "addition overflow or from_size problem");
guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
// Now update to_start with the new from_end
to_start = MAX2(from_end, to_start);
}
guarantee(to_start != to_end, "to space is zero sized");
log_trace(gc, ergo)(" [eden_start .. eden_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(eden_start),
p2i(eden_end),
pointer_delta(eden_end, eden_start, sizeof(char)));
log_trace(gc, ergo)(" [from_start .. from_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(from_start),
p2i(from_end),
pointer_delta(from_end, from_start, sizeof(char)));
log_trace(gc, ergo)(" [ to_start .. to_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(to_start),
p2i(to_end),
pointer_delta( to_end, to_start, sizeof(char)));
} else {
// Eden, to, from
log_trace(gc, ergo)(" Eden, to, from:");
// To space gets priority over eden resizing. Note that we position
// to space as if we were able to resize from space, even though from
// space is not modified.
// Giving eden priority was tried and gave poorer performance.
to_end = (char*)pointer_delta(virtual_space()->high(),
(char*)requested_survivor_size,
sizeof(char));
to_end = MIN2(to_end, from_start);
to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
sizeof(char));
// if the space sizes are to be increased by several times then
// 'to_start' will point beyond the young generation. In this case
// 'to_start' should be adjusted.
to_start = MAX2(to_start, eden_start + SpaceAlignment);
// Compute how big eden can be, then adjust end.
// See comments above on calculating eden_end.
size_t eden_size;
if (maintain_minimum) {
eden_size = pointer_delta(to_start, eden_start, sizeof(char));
} else {
eden_size = MIN2(requested_eden_size,
pointer_delta(to_start, eden_start, sizeof(char)));
}
eden_end = eden_start + eden_size;
assert(eden_end >= eden_start, "addition overflowed");
// Could choose to not let eden shrink
// to_start = MAX2(to_start, eden_end);
// Don't let eden shrink down to 0 or less.
eden_end = MAX2(eden_end, eden_start + SpaceAlignment);
to_start = MAX2(to_start, eden_end);
log_trace(gc, ergo)(" [eden_start .. eden_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(eden_start),
p2i(eden_end),
pointer_delta(eden_end, eden_start, sizeof(char)));
log_trace(gc, ergo)(" [ to_start .. to_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(to_start),
p2i(to_end),
pointer_delta( to_end, to_start, sizeof(char)));
log_trace(gc, ergo)(" [from_start .. from_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(from_start),
p2i(from_end),
pointer_delta(from_end, from_start, sizeof(char)));
}
guarantee((HeapWord*)from_start <= from_space()->bottom(),
"from start moved to the right");
guarantee((HeapWord*)from_end >= from_space()->top(),
"from end moved into live data");
assert(is_object_aligned(eden_start), "checking alignment");
assert(is_object_aligned(from_start), "checking alignment");
assert(is_object_aligned(to_start), "checking alignment");
MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
// Let's make sure the call to initialize doesn't reset "top"!
HeapWord* old_from_top = from_space()->top();
// For logging block below
size_t old_from = from_space()->capacity_in_bytes();
size_t old_to = to_space()->capacity_in_bytes();
if (ZapUnusedHeapArea) {
// NUMA is a special case because a numa space is not mangled
// in order to not prematurely bind its address to memory to
// the wrong memory (i.e., don't want the GC thread to first
// touch the memory). The survivor spaces are not numa
// spaces and are mangled.
if (UseNUMA) {
if (eden_from_to_order) {
mangle_survivors(from_space(), fromMR, to_space(), toMR);
} else {
mangle_survivors(to_space(), toMR, from_space(), fromMR);
}
}
// If not mangling the spaces, do some checking to verify that
// the spaces are already mangled.
// The spaces should be correctly mangled at this point so
// do some checking here. Note that they are not being mangled
// in the calls to initialize().
// Must check mangling before the spaces are reshaped. Otherwise,
// the bottom or end of one space may have moved into an area
// covered by another space and a failure of the check may
// not correctly indicate which space is not properly mangled.
HeapWord* limit = (HeapWord*) virtual_space()->high();
eden_space()->check_mangled_unused_area(limit);
from_space()->check_mangled_unused_area(limit);
to_space()->check_mangled_unused_area(limit);
}
// When an existing space is being initialized, it is not
// mangled because the space has been previously mangled.
eden_space()->initialize(edenMR,
SpaceDecorator::Clear,
SpaceDecorator::DontMangle);
to_space()->initialize(toMR,
SpaceDecorator::Clear,
SpaceDecorator::DontMangle);
from_space()->initialize(fromMR,
SpaceDecorator::DontClear,
SpaceDecorator::DontMangle);
assert(from_space()->top() == old_from_top, "from top changed!");
log_trace(gc, ergo)("AdaptiveSizePolicy::survivor space sizes: collection: %d (" SIZE_FORMAT ", " SIZE_FORMAT ") -> (" SIZE_FORMAT ", " SIZE_FORMAT ") ",
ParallelScavengeHeap::heap()->total_collections(),
old_from, old_to,
from_space()->capacity_in_bytes(),
to_space()->capacity_in_bytes());
}
void PSYoungGen::swap_spaces() {
MutableSpace* s = from_space();
_from_space = to_space();
_to_space = s;
// Now update the decorators.
PSMarkSweepDecorator* md = from_mark_sweep();
_from_mark_sweep = to_mark_sweep();
_to_mark_sweep = md;
assert(from_mark_sweep()->space() == from_space(), "Sanity");
assert(to_mark_sweep()->space() == to_space(), "Sanity");
}
size_t PSYoungGen::capacity_in_bytes() const {
return eden_space()->capacity_in_bytes()
+ from_space()->capacity_in_bytes(); // to_space() is only used during scavenge
}
size_t PSYoungGen::used_in_bytes() const {
return eden_space()->used_in_bytes()
+ from_space()->used_in_bytes(); // to_space() is only used during scavenge
}
size_t PSYoungGen::free_in_bytes() const {
return eden_space()->free_in_bytes()
+ from_space()->free_in_bytes(); // to_space() is only used during scavenge
}
size_t PSYoungGen::capacity_in_words() const {
return eden_space()->capacity_in_words()
+ from_space()->capacity_in_words(); // to_space() is only used during scavenge
}
size_t PSYoungGen::used_in_words() const {
return eden_space()->used_in_words()
+ from_space()->used_in_words(); // to_space() is only used during scavenge
}
size_t PSYoungGen::free_in_words() const {
return eden_space()->free_in_words()
+ from_space()->free_in_words(); // to_space() is only used during scavenge
}
void PSYoungGen::object_iterate(ObjectClosure* blk) {
eden_space()->object_iterate(blk);
from_space()->object_iterate(blk);
to_space()->object_iterate(blk);
}
#if INCLUDE_SERIALGC
void PSYoungGen::precompact() {
eden_mark_sweep()->precompact();
from_mark_sweep()->precompact();
to_mark_sweep()->precompact();
}
void PSYoungGen::adjust_pointers() {
eden_mark_sweep()->adjust_pointers();
from_mark_sweep()->adjust_pointers();
to_mark_sweep()->adjust_pointers();
}
void PSYoungGen::compact() {
eden_mark_sweep()->compact(ZapUnusedHeapArea);
from_mark_sweep()->compact(ZapUnusedHeapArea);
// Mark sweep stores preserved markWords in to space, don't disturb!
to_mark_sweep()->compact(false);
}
#endif // INCLUDE_SERIALGC
void PSYoungGen::print() const { print_on(tty); }
void PSYoungGen::print_on(outputStream* st) const {
st->print(" %-15s", "PSYoungGen");
st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
capacity_in_bytes()/K, used_in_bytes()/K);
virtual_space()->print_space_boundaries_on(st);
st->print(" eden"); eden_space()->print_on(st);
st->print(" from"); from_space()->print_on(st);
st->print(" to "); to_space()->print_on(st);
}
size_t PSYoungGen::available_for_expansion() {
ShouldNotReachHere();
return 0;
}
size_t PSYoungGen::available_for_contraction() {
ShouldNotReachHere();
return 0;
}
size_t PSYoungGen::available_to_min_gen() {
assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
return virtual_space()->committed_size() - min_gen_size();
}
// This method assumes that from-space has live data and that
// any shrinkage of the young gen is limited by location of
// from-space.
size_t PSYoungGen::available_to_live() {
size_t delta_in_survivor = 0;
MutableSpace* space_shrinking = NULL;
if (from_space()->end() > to_space()->end()) {
space_shrinking = from_space();
} else {
space_shrinking = to_space();
/**代码未完, 请加载全部代码(NowJava.com).**/