/*
* Copyright (c) 2002, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "aot/aotLoader.hpp"
#include "classfile/classLoaderDataGraph.hpp"
#include "classfile/stringTable.hpp"
#include "code/codeCache.hpp"
#include "gc/parallel/parallelScavengeHeap.hpp"
#include "gc/parallel/psAdaptiveSizePolicy.hpp"
#include "gc/parallel/psClosure.inline.hpp"
#include "gc/parallel/psCompactionManager.hpp"
#include "gc/parallel/psMarkSweepProxy.hpp"
#include "gc/parallel/psParallelCompact.inline.hpp"
#include "gc/parallel/psPromotionManager.inline.hpp"
#include "gc/parallel/psRootType.hpp"
#include "gc/parallel/psScavenge.inline.hpp"
#include "gc/shared/gcCause.hpp"
#include "gc/shared/gcHeapSummary.hpp"
#include "gc/shared/gcId.hpp"
#include "gc/shared/gcLocker.hpp"
#include "gc/shared/gcTimer.hpp"
#include "gc/shared/gcTrace.hpp"
#include "gc/shared/gcTraceTime.inline.hpp"
#include "gc/shared/isGCActiveMark.hpp"
#include "gc/shared/referencePolicy.hpp"
#include "gc/shared/referenceProcessor.hpp"
#include "gc/shared/referenceProcessorPhaseTimes.hpp"
#include "gc/shared/scavengableNMethods.hpp"
#include "gc/shared/spaceDecorator.inline.hpp"
#include "gc/shared/weakProcessor.hpp"
#include "gc/shared/workerPolicy.hpp"
#include "gc/shared/workgroup.hpp"
#include "memory/iterator.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "logging/log.hpp"
#include "oops/access.inline.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/threadCritical.hpp"
#include "runtime/vmThread.hpp"
#include "runtime/vmOperations.hpp"
#include "services/management.hpp"
#include "services/memoryService.hpp"
#include "utilities/stack.inline.hpp"
HeapWord* PSScavenge::_to_space_top_before_gc = NULL;
int PSScavenge::_consecutive_skipped_scavenges = 0;
SpanSubjectToDiscoveryClosure PSScavenge::_span_based_discoverer;
ReferenceProcessor* PSScavenge::_ref_processor = NULL;
PSCardTable* PSScavenge::_card_table = NULL;
bool PSScavenge::_survivor_overflow = false;
uint PSScavenge::_tenuring_threshold = 0;
HeapWord* PSScavenge::_young_generation_boundary = NULL;
uintptr_t PSScavenge::_young_generation_boundary_compressed = 0;
elapsedTimer PSScavenge::_accumulated_time;
STWGCTimer PSScavenge::_gc_timer;
ParallelScavengeTracer PSScavenge::_gc_tracer;
CollectorCounters* PSScavenge::_counters = NULL;
static void scavenge_roots_work(ParallelRootType::Value root_type, uint worker_id) {
assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
PSPromotionManager* pm = PSPromotionManager::gc_thread_promotion_manager(worker_id);
PSScavengeRootsClosure roots_closure(pm);
PSPromoteRootsClosure roots_to_old_closure(pm);
switch (root_type) {
case ParallelRootType::universe:
Universe::oops_do(&roots_closure);
break;
case ParallelRootType::jni_handles:
JNIHandles::oops_do(&roots_closure);
break;
case ParallelRootType::object_synchronizer:
ObjectSynchronizer::oops_do(&roots_closure);
break;
case ParallelRootType::system_dictionary:
SystemDictionary::oops_do(&roots_closure);
break;
case ParallelRootType::class_loader_data:
{
PSScavengeCLDClosure cld_closure(pm);
ClassLoaderDataGraph::cld_do(&cld_closure);
}
break;
case ParallelRootType::management:
Management::oops_do(&roots_closure);
break;
case ParallelRootType::jvmti:
JvmtiExport::oops_do(&roots_closure);
break;
case ParallelRootType::code_cache:
{
MarkingCodeBlobClosure code_closure(&roots_to_old_closure, CodeBlobToOopClosure::FixRelocations);
ScavengableNMethods::nmethods_do(&code_closure);
AOTLoader::oops_do(&roots_closure);
}
break;
case ParallelRootType::sentinel:
DEBUG_ONLY(default:) // DEBUG_ONLY hack will create compile error on release builds (-Wswitch) and runtime check on debug builds
fatal("Bad enumeration value: %u", root_type);
break;
}
// Do the real work
pm->drain_stacks(false);
}
static void steal_work(ParallelTaskTerminator& terminator, uint worker_id) {
assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
PSPromotionManager* pm =
PSPromotionManager::gc_thread_promotion_manager(worker_id);
pm->drain_stacks(true);
guarantee(pm->stacks_empty(),
"stacks should be empty at this point");
while (true) {
StarTask p;
if (PSPromotionManager::steal_depth(worker_id, p)) {
TASKQUEUE_STATS_ONLY(pm->record_steal(p));
pm->process_popped_location_depth(p);
pm->drain_stacks_depth(true);
} else {
if (terminator.offer_termination()) {
break;
}
}
}
guarantee(pm->stacks_empty(), "stacks should be empty at this point");
}
// Define before use
class PSIsAliveClosure: public BoolObjectClosure {
public:
bool do_object_b(oop p) {
return (!PSScavenge::is_obj_in_young(p)) || p->is_forwarded();
}
};
PSIsAliveClosure PSScavenge::_is_alive_closure;
class PSKeepAliveClosure: public OopClosure {
protected:
MutableSpace* _to_space;
PSPromotionManager* _promotion_manager;
public:
PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
_to_space = heap->young_gen()->to_space();
assert(_promotion_manager != NULL, "Sanity");
}
template <class T> void do_oop_work(T* p) {
assert (oopDesc::is_oop(RawAccess<IS_NOT_NULL>::oop_load(p)),
"expected an oop while scanning weak refs");
// Weak refs may be visited more than once.
if (PSScavenge::should_scavenge(p, _to_space)) {
_promotion_manager->copy_and_push_safe_barrier<T, /*promote_immediately=*/false>(p);
}
}
virtual void do_oop(oop* p) { PSKeepAliveClosure::do_oop_work(p); }
virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
};
class PSEvacuateFollowersClosure: public VoidClosure {
private:
PSPromotionManager* _promotion_manager;
public:
PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
virtual void do_void() {
assert(_promotion_manager != NULL, "Sanity");
_promotion_manager->drain_stacks(true);
guarantee(_promotion_manager->stacks_empty(),
"stacks should be empty at this point");
}
};
class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
virtual void execute(ProcessTask& process_task, uint ergo_workers);
};
class PSRefProcTask : public AbstractGangTask {
typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
TaskTerminator _terminator;
ProcessTask& _task;
uint _active_workers;
public:
PSRefProcTask(ProcessTask& task, uint active_workers)
: AbstractGangTask("PSRefProcTask"),
_terminator(active_workers, PSPromotionManager::stack_array_depth()),
_task(task),
_active_workers(active_workers) {
}
virtual void work(uint worker_id) {
PSPromotionManager* promotion_manager =
PSPromotionManager::gc_thread_promotion_manager(worker_id);
assert(promotion_manager != NULL, "sanity check");
PSKeepAliveClosure keep_alive(promotion_manager);
PSEvacuateFollowersClosure evac_followers(promotion_manager);
PSIsAliveClosure is_alive;
_task.work(worker_id, is_alive, keep_alive, evac_followers);
if (_task.marks_oops_alive() && _active_workers > 1) {
steal_work(*_terminator.terminator(), worker_id);
}
}
};
void PSRefProcTaskExecutor::execute(ProcessTask& process_task, uint ergo_workers) {
PSRefProcTask task(process_task, ergo_workers);
ParallelScavengeHeap::heap()->workers().run_task(&task);
}
// This method contains all heap specific policy for invoking scavenge.
// PSScavenge::invoke_no_policy() will do nothing but attempt to
// scavenge. It will not clean up after failed promotions, bail out if
// we've exceeded policy time limits, or any other special behavior.
// All such policy should be placed here.
//
// Note that this method should only be called from the vm_thread while
// at a safepoint!
bool PSScavenge::invoke() {
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant");
ParallelScavengeHeap* const heap = ParallelScavengeHeap::heap();
PSAdaptiveSizePolicy* policy = heap->size_policy();
IsGCActiveMark mark;
const bool scavenge_done = PSScavenge::invoke_no_policy();
const bool need_full_gc = !scavenge_done ||
policy->should_full_GC(heap->old_gen()->free_in_bytes());
bool full_gc_done = false;
if (UsePerfData) {
PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
const int ffs_val = need_full_gc ? full_follows_scavenge : not_skipped;
counters->update_full_follows_scavenge(ffs_val);
}
if (need_full_gc) {
GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
SoftRefPolicy* srp = heap->soft_ref_policy();
const bool clear_all_softrefs = srp->should_clear_all_soft_refs();
if (UseParallelOldGC) {
full_gc_done = PSParallelCompact::invoke_no_policy(clear_all_softrefs);
} else {
full_gc_done = PSMarkSweepProxy::invoke_no_policy(clear_all_softrefs);
}
}
return full_gc_done;
}
class PSThreadRootsTaskClosure : public ThreadClosure {
uint _worker_id;
public:
PSThreadRootsTaskClosure(uint worker_id) : _worker_id(worker_id) { }
virtual void do_thread(Thread* thread) {
assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
PSPromotionManager* pm = PSPromotionManager::gc_thread_promotion_manager(_worker_id);
PSScavengeRootsClosure roots_closure(pm);
MarkingCodeBlobClosure roots_in_blobs(&roots_closure, CodeBlobToOopClosure::FixRelocations);
thread->oops_do(&roots_closure, &roots_in_blobs);
// Do the real work
pm->drain_stacks(false);
}
};
class ScavengeRootsTask : public AbstractGangTask {
StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do
SequentialSubTasksDone _subtasks;
PSOldGen* _old_gen;
HeapWord* _gen_top;
uint _active_workers;
bool _is_empty;
TaskTerminator _terminator;
public:
ScavengeRootsTask(PSOldGen* old_gen,
HeapWord* gen_top,
uint active_workers,
bool is_empty) :
AbstractGangTask("ScavengeRootsTask"),
_strong_roots_scope(active_workers),
_subtasks(),
_old_gen(old_gen),
_gen_top(gen_top),
_active_workers(active_workers),
_is_empty(is_empty),
_terminator(active_workers, PSPromotionManager::vm_thread_promotion_manager()->stack_array_depth()) {
_subtasks.set_n_threads(active_workers);
_subtasks.set_n_tasks(ParallelRootType::sentinel);
}
virtual void work(uint worker_id) {
ResourceMark rm;
if (!_is_empty) {
// There are only old-to-young pointers if there are objects
// in the old gen.
assert(_old_gen != NULL, "Sanity");
// There are no old-to-young pointers if the old gen is empty.
assert(!_old_gen->object_space()->is_empty(), "Should not be called is there is no work");
assert(_old_gen->object_space()->contains(_gen_top) || _gen_top == _old_gen->object_space()->top(), "Sanity");
assert(worker_id < ParallelGCThreads, "Sanity");
{
PSPromotionManager* pm = PSPromotionManager::gc_thread_promotion_manager(worker_id);
PSCardTable* card_table = ParallelScavengeHeap::heap()->card_table();
card_table->scavenge_contents_parallel(_old_gen->start_array(),
_old_gen->object_space(),
_gen_top,
pm,
worker_id,
_active_workers);
// Do the real work
pm->drain_stacks(false);
}
}
for (uint root_type = 0; _subtasks.try_claim_task(root_type); /* empty */ ) {
scavenge_roots_work(static_cast<ParallelRootType::Value>(root_type), worker_id);
}
_subtasks.all_tasks_completed();
PSThreadRootsTaskClosure closure(worker_id);
Threads::possibly_parallel_threads_do(true /*parallel */, &closure);
// If active_workers can exceed 1, add a steal_work().
// PSPromotionManager::drain_stacks_depth() does not fully drain its
// stacks and expects a steal_work() to complete the draining if
// ParallelGCThreads is > 1.
if (_active_workers > 1) {
steal_work(*_terminator.terminator() , worker_id);
}
}
};
// This method contains no policy. You should probably
// be calling invoke() instead.
bool PSScavenge::invoke_no_policy() {
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
_gc_timer.register_gc_start();
TimeStamp scavenge_entry;
TimeStamp scavenge_midpoint;
TimeStamp scavenge_exit;
scavenge_entry.update();
if (GCLocker::check_active_before_gc()) {
return false;
}
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
GCCause::Cause gc_cause = heap->gc_cause();
// Check for potential problems.
if (!should_attempt_scavenge()) {
return false;
}
GCIdMark gc_id_mark;
_gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
bool promotion_failure_occurred = false;
PSYoungGen* young_gen = heap->young_gen();
PSOldGen* old_gen = heap->old_gen();
PSAdaptiveSizePolicy* size_policy = heap->size_policy();
heap->increment_total_collections();
if (AdaptiveSizePolicy::should_update_eden_stats(gc_cause)) {
// Gather the feedback data for eden occupancy.
young_gen->eden_space()->accumulate_statistics();
}
heap->print_heap_before_gc();
heap->trace_heap_before_gc(&_gc_tracer);
assert(!NeverTenure || _tenuring_threshold == markWord::max_age + 1, "Sanity");
assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
// Fill in TLABs
heap->ensure_parsability(true); // retire TLABs
if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
HandleMark hm; // Discard invalid handles created during verification
Universe::verify("Before GC");
}
{
ResourceMark rm;
HandleMark hm;
GCTraceCPUTime tcpu;
GCTraceTime(Info, gc) tm("Pause Young", NULL, gc_cause, true);
TraceCollectorStats tcs(counters());
TraceMemoryManagerStats tms(heap->young_gc_manager(), gc_cause);
if (log_is_enabled(Debug, gc, heap, exit)) {
accumulated_time()->start();
}
// Let the size policy know we're starting
size_policy->minor_collection_begin();
// Verify the object start arrays.
if (VerifyObjectStartArray &&
VerifyBeforeGC) {
old_gen->verify_object_start_array();
}
// Verify no unmarked old->young roots
if (VerifyRememberedSets) {
heap->card_table()->verify_all_young_refs_imprecise();
}
assert(young_gen->to_space()->is_empty(),
"Attempt to scavenge with live objects in to_space");
young_gen->to_space()->clear(SpaceDecorator::Mangle);
save_to_space_top_before_gc();
#if COMPILER2_OR_JVMCI
DerivedPointerTable::clear();
#endif
reference_processor()->enable_discovery();
reference_processor()->setup_policy(false);
const PreGenGCValues pre_gc_values = heap->get_pre_gc_values();
// Reset our survivor overflow.
set_survivor_overflow(false);
// We need to save the old top values before
// creating the promotion_manager. We pass the top
// values to the card_table, to prevent it from
// straying into the promotion labs.
HeapWord* old_top = old_gen->object_space()->top();
const uint active_workers =
WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().total_workers(),
ParallelScavengeHeap::heap()->workers().active_workers(),
Threads::number_of_non_daemon_threads());
ParallelScavengeHeap::heap()->workers().update_active_workers(active_workers);
PSPromotionManager::pre_scavenge();
// We'll use the promotion manager again later.
PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
{
GCTraceTime(Debug, gc, phases) tm("Scavenge", &_gc_timer);
ScavengeRootsTask task(old_gen, old_top, active_workers, old_gen->object_space()->is_empty());
ParallelScavengeHeap::heap()->workers().run_task(&task);
}
scavenge_midpoint.update();
// Process reference objects discovered during scavenge
{
GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
reference_processor()->setup_policy(false); // not always_clear
reference_processor()->set_active_mt_degree(active_workers);
PSKeepAliveClosure keep_alive(promotion_manager);
PSEvacuateFollowersClosure evac_followers(promotion_manager);
ReferenceProcessorStats stats;
ReferenceProcessorPhaseTimes pt(&_gc_timer, reference_processor()->max_num_queues());
if (reference_processor()->processing_is_mt()) {
PSRefProcTaskExecutor task_executor;
stats = reference_processor()->process_discovered_references(
&_is_alive_closure, &keep_alive, &evac_followers, &task_executor,
&pt);
} else {
stats = reference_processor()->process_discovered_references(
&_is_alive_closure, &keep_alive, &evac_followers, NULL, &pt);
}
_gc_tracer.report_gc_reference_stats(stats);
pt.print_all_references();
}
assert(promotion_manager->stacks_empty(),"stacks should be empty at this point");
PSScavengeRootsClosure root_closure(promotion_manager);
{
GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
WeakProcessor::weak_oops_do(&_is_alive_closure, &root_closure);
}
// Verify that usage of root_closure didn't copy any objects.
assert(promotion_manager->stacks_empty(),"stacks should be empty at this point");
// Finally, flush the promotion_manager's labs, and deallocate its stacks.
promotion_failure_occurred = PSPromotionManager::post_scavenge(_gc_tracer);
if (promotion_failure_occurred) {
clean_up_failed_promotion();
log_info(gc, promotion)("Promotion failed");
}
_gc_tracer.report_tenuring_threshold(tenuring_threshold());
// Let the size policy know we're done. Note that we count promotion
// failure cleanup time as part of the collection (otherwise, we're
// implicitly saying it's mutator time).
size_policy->minor_collection_end(gc_cause);
if (!promotion_failure_occurred) {
// Swap the survivor spaces.
young_gen->eden_space()->clear(SpaceDecorator::Mangle);
young_gen->from_space()->clear(SpaceDecorator::Mangle);
young_gen->swap_spaces();
size_t survived = young_gen->from_space()->used_in_bytes();
size_t promoted = old_gen->used_in_bytes() - pre_gc_values.old_gen_used();
size_policy->update_averages(_survivor_overflow, survived, promoted);
// A successful scavenge should restart the GC time limit count which is
// for full GC's.
size_policy->reset_gc_overhead_limit_count();
if (UseAdaptiveSizePolicy) {
// Calculate the new survivor size and tenuring threshold
log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
if (UsePerfData) {
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
counters->update_old_eden_size(
size_policy->calculated_eden_size_in_bytes());
counters->update_old_promo_size(
size_policy->calculated_promo_size_in_bytes());
counters->update_old_capacity(old_gen->capacity_in_bytes());
counters->update_young_capacity(young_gen->capacity_in_bytes());
counters->update_survived(survived);
counters->update_promoted(promoted);
counters->update_survivor_overflowed(_survivor_overflow);
}
size_t max_young_size = young_gen->max_size();
// Deciding a free ratio in the young generation is tricky, so if
// MinHeapFreeRatio or MaxHeapFreeRatio are in use (implicating
// that the old generation size may have been limited because of them) we
// should then limit our young generation size using NewRatio to have it
// follow the old generation size.
if (MinHeapFreeRatio != 0 || MaxHeapFreeRatio != 100) {
max_young_size = MIN2(old_gen->capacity_in_bytes() / NewRatio, young_gen->max_size());
}
size_t survivor_limit =
size_policy->max_survivor_size(max_young_size);
_tenuring_threshold =
size_policy->compute_survivor_space_size_and_threshold(
_survivor_overflow,
_tenuring_threshold,
survivor_limit);
log_debug(gc, age)("Desired survivor size " SIZE_FORMAT " bytes, new threshold %u (max threshold " UINTX_FORMAT ")",
size_policy->calculated_survivor_size_in_bytes(),
_tenuring_threshold, MaxTenuringThreshold);
if (UsePerfData) {
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
counters->update_tenuring_threshold(_tenuring_threshold);
counters->update_survivor_size_counters();
}
// Do call at minor collections?
// Don't check if the size_policy is ready at this
// level. Let the size_policy check that internally.
if (UseAdaptiveGenerationSizePolicyAtMinorCollection &&
(AdaptiveSizePolicy::should_update_eden_stats(gc_cause))) {
// Calculate optimal free space amounts
assert(young_gen->max_size() >
young_gen->from_space()->capacity_in_bytes() +
young_gen->to_space()->capacity_in_bytes(),
"Sizes of space in young gen are out-of-bounds");
size_t young_live = young_gen->used_in_bytes();
size_t eden_live = young_gen->eden_space()->used_in_bytes();
size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
size_t max_old_gen_size = old_gen->max_gen_size();
size_t max_eden_size = max_young_size -
young_gen->from_space()->capacity_in_bytes() -
young_gen->to_space()->capacity_in_bytes();
// Used for diagnostics
size_policy->clear_generation_free_space_flags();
size_policy->compute_eden_space_size(young_live,
eden_live,
cur_eden,
max_eden_size,
false /* not full gc*/);
size_policy->check_gc_overhead_limit(eden_live,
max_old_gen_size,
max_eden_size,
false /* not full gc*/,
gc_cause,
heap->soft_ref_policy());
size_policy->decay_supplemental_growth(false /* not full gc*/);
}
// Resize the young generation at every collection
// even if new sizes have not been calculated. This is
// to allow resizes that may have been inhibited by the
// relative location of the "to" and "from" spaces.
// Resizing the old gen at young collections can cause increases
// that don't feed back to the generation sizing policy until
// a full collection. Don't resize the old gen here.
heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
size_policy->calculated_survivor_size_in_bytes());
log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
}
// Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
// cause the change of the heap layout. Make sure eden is reshaped if that's the case.
// Also update() will case adaptive NUMA chunk resizing.
assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
young_gen->eden_space()->update();
heap->gc_policy_counters()->update_counters();
heap->resize_all_tlabs();
assert(young_gen->to_space()->is_empty(), "to space should be empty now");
}
#if COMPILER2_OR_JVMCI
DerivedPointerTable::update_pointers();
#endif
NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
// Re-verify object start arrays
if (VerifyObjectStartArray &&
VerifyAfterGC) {
old_gen->verify_object_start_array();
}
// Verify all old -> young cards are now precise
if (VerifyRememberedSets) {
// Precise verification will give false positives. Until this is fixed,
// use imprecise verification.
// heap->card_table()->verify_all_young_refs_precise();
heap->card_table()->verify_all_young_refs_imprecise();
}
if (log_is_enabled(Debug, gc, heap, exit)) {
accumulated_time()->stop();
}
heap->print_heap_change(pre_gc_values);
// Track memory usage and detect low memory
MemoryService::track_memory_usage();
heap->update_counters();
}
if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
HandleMark hm; // Discard invalid handles created during verification
Universe::verify("After GC");
}
heap->print_heap_after_gc();
heap->trace_heap_after_gc(&_gc_tracer);
scavenge_exit.update();
log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
scavenge_entry.ticks(), scavenge_midpoint.ticks(),
scavenge_exit.ticks());
#ifdef TRACESPINNING
ParallelTaskTerminator::print_termination_counts();
#endif
AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
_gc_timer.register_gc_end();
_gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
return !promotion_failure_occurred;
}
// This method iterates over all objects in the young generation,
// removing all forwarding references. It then restores any preserved marks.
void PSScavenge::clean_up_failed_promotion() {
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
PSYoungGen* young_gen = heap->young_gen();
RemoveForwardedPointerClosure remove_fwd_ptr_closure;
young_gen->object_iterate(&remove_fwd_ptr_closure);
PSPromotionManager::restore_preserved_marks();
// Reset the PromotionFailureALot counters.
NOT_PRODUCT(heap->reset_promotion_should_fail();)
}
bool PSScavenge::should_attempt_scavenge() {
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
if (UsePerfData) {
counters->update_scavenge_skipped(not_skipped);
}
PSYoungGen* young_gen = heap->young_gen();
PSOldGen* old_gen = heap->old_gen();
// Do not attempt to promote unless to_space is empty
if (!young_gen->to_space()->is_empty()) {
_consecutive_skipped_scavenges++;
if (UsePerfData) {
counters->update_scavenge_skipped(to_space_not_empty);
}
return false;
}
// Test to see if the scavenge will likely fail.
/**代码未完, 请加载全部代码(NowJava.com).**/