/*
* Copyright (c) 2002, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP
#define SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP
#include "gc/parallel/parallelScavengeHeap.hpp"
#include "gc/parallel/parMarkBitMap.inline.hpp"
#include "gc/parallel/psOldGen.hpp"
#include "gc/parallel/psPromotionLAB.inline.hpp"
#include "gc/parallel/psPromotionManager.hpp"
#include "gc/parallel/psScavenge.inline.hpp"
#include "gc/shared/taskqueue.inline.hpp"
#include "logging/log.hpp"
#include "memory/iterator.inline.hpp"
#include "oops/access.inline.hpp"
#include "oops/oop.inline.hpp"
inline PSPromotionManager* PSPromotionManager::manager_array(uint index) {
assert(_manager_array != NULL, "access of NULL manager_array");
assert(index <= ParallelGCThreads, "out of range manager_array access");
return &_manager_array[index];
}
template <class T>
inline void PSPromotionManager::push_depth(T* p) {
claimed_stack_depth()->push(p);
}
template <class T>
inline void PSPromotionManager::claim_or_forward_internal_depth(T* p) {
if (p != NULL) { // XXX: error if p != NULL here
oop o = RawAccess<IS_NOT_NULL>::oop_load(p);
if (o->is_forwarded()) {
o = o->forwardee();
// Card mark
if (PSScavenge::is_obj_in_young(o)) {
PSScavenge::card_table()->inline_write_ref_field_gc(p, o);
}
RawAccess<IS_NOT_NULL>::oop_store(p, o);
} else {
push_depth(p);
}
}
}
template <class T>
inline void PSPromotionManager::claim_or_forward_depth(T* p) {
assert(should_scavenge(p, true), "revisiting object?");
assert(ParallelScavengeHeap::heap()->is_in(p), "pointer outside heap");
claim_or_forward_internal_depth(p);
}
inline void PSPromotionManager::promotion_trace_event(oop new_obj, oop old_obj,
size_t obj_size,
uint age, bool tenured,
const PSPromotionLAB* lab) {
// Skip if memory allocation failed
if (new_obj != NULL) {
const ParallelScavengeTracer* gc_tracer = PSScavenge::gc_tracer();
if (lab != NULL) {
// Promotion of object through newly allocated PLAB
if (gc_tracer->should_report_promotion_in_new_plab_event()) {
size_t obj_bytes = obj_size * HeapWordSize;
size_t lab_size = lab->capacity();
gc_tracer->report_promotion_in_new_plab_event(old_obj->klass(), obj_bytes,
age, tenured, lab_size);
}
} else {
// Promotion of object directly to heap
if (gc_tracer->should_report_promotion_outside_plab_event()) {
size_t obj_bytes = obj_size * HeapWordSize;
gc_tracer->report_promotion_outside_plab_event(old_obj->klass(), obj_bytes,
age, tenured);
}
}
}
}
class PSPushContentsClosure: public BasicOopIterateClosure {
PSPromotionManager* _pm;
public:
PSPushContentsClosure(PSPromotionManager* pm) : BasicOopIterateClosure(PSScavenge::reference_processor()), _pm(pm) {}
template <typename T> void do_oop_nv(T* p) {
if (PSScavenge::should_scavenge(p)) {
_pm->claim_or_forward_depth(p);
}
}
virtual void do_oop(oop* p) { do_oop_nv(p); }
virtual void do_oop(narrowOop* p) { do_oop_nv(p); }
// Don't use the oop verification code in the oop_oop_iterate framework.
debug_only(virtual bool should_verify_oops() { return false; })
};
//
// This closure specialization will override the one that is defined in
// instanceRefKlass.inline.cpp. It swaps the order of oop_oop_iterate and
// oop_oop_iterate_ref_processing. Unfortunately G1 and Parallel behaves
// significantly better (especially in the Derby benchmark) using opposite
// order of these function calls.
//
template <>
inline void InstanceRefKlass::oop_oop_iterate_reverse<oop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) {
oop_oop_iterate_ref_processing<oop>(obj, closure);
InstanceKlass::oop_oop_iterate_reverse<oop>(obj, closure);
}
template <>
inline void InstanceRefKlass::oop_oop_iterate_reverse<narrowOop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) {
oop_oop_iterate_ref_processing<narrowOop>(obj, closure);
InstanceKlass::oop_oop_iterate_reverse<narrowOop>(obj, closure);
}
inline void PSPromotionManager::push_contents(oop obj) {
if (!obj->klass()->is_typeArray_klass()) {
PSPushContentsClosure pcc(this);
obj->oop_iterate_backwards(&pcc);
}
}
//
// This method is pretty bulky. It would be nice to split it up
// into smaller submethods, but we need to be careful not to hurt
// performance.
//
template<bool promote_immediately>
inline oop PSPromotionManager::copy_to_survivor_space(oop o) {
assert(should_scavenge(&o), "Sanity");
oop new_obj = NULL;
// NOTE! We must be very careful with any methods that access the mark
// in o. There may be multiple threads racing on it, and it may be forwarded
// at any time. Do not use oop methods for accessing the mark!
markWord test_mark = o->mark_raw();
// The same test as "o->is_forwarded()"
if (!test_mark.is_marked()) {
bool new_obj_is_tenured = false;
size_t new_obj_size = o->size();
// Find the objects age, MT safe.
uint age = (test_mark.has_displaced_mark_helper() /* o->has_displaced_mark() */) ?
test_mark.displaced_mark_helper().age() : test_mark.age();
if (!promote_immediately) {
// Try allocating obj in to-space (unless too old)
if (age < PSScavenge::tenuring_threshold()) {
new_obj = (oop) _young_lab.allocate(new_obj_size);
if (new_obj == NULL && !_young_gen_is_full) {
// Do we allocate directly, or flush and refill?
if (new_obj_size > (YoungPLABSize / 2)) {
// Allocate this object directly
new_obj = (oop)young_space()->cas_allocate(new_obj_size);
promotion_trace_event(new_obj, o, new_obj_size, age, false, NULL);
} else {
// Flush and fill
_young_lab.flush();
HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize);
if (lab_base != NULL) {
_young_lab.initialize(MemRegion(lab_base, YoungPLABSize));
// Try the young lab allocation again.
new_obj = (oop) _young_lab.allocate(new_obj_size);
promotion_trace_event(new_obj, o, new_obj_size, age, false, &_young_lab);
} else {
_young_gen_is_full = true;
}
}
}
}
}
// Otherwise try allocating obj tenured
if (new_obj == NULL) {
#ifndef PRODUCT
if (ParallelScavengeHeap::heap()->promotion_should_fail()) {
return oop_promotion_failed(o, test_mark);
}
#endif // #ifndef PRODUCT
new_obj = (oop) _old_lab.allocate(new_obj_size);
new_obj_is_tenured = true;
if (new_obj == NULL) {
if (!_old_gen_is_full) {
// Do we allocate directly, or flush and refill?
if (new_obj_size > (OldPLABSize / 2)) {
// Allocate this object directly
new_obj = (oop)old_gen()->cas_allocate(new_obj_size);
promotion_trace_event(new_obj, o, new_obj_size, age, true, NULL);
} else {
// Flush and fill
_old_lab.flush();
HeapWord* lab_base = old_gen()->cas_allocate(OldPLABSize);
if(lab_base != NULL) {
#ifdef ASSERT
// Delay the initialization of the promotion lab (plab).
// This exposes uninitialized plabs to card table processing.
if (GCWorkerDelayMillis > 0) {
os::naked_sleep(GCWorkerDelayMillis);
}
#endif
_old_lab.initialize(MemRegion(lab_base, OldPLABSize));
// Try the old lab allocation again.
new_obj = (oop) _old_lab.allocate(new_obj_size);
promotion_trace_event(new_obj, o, new_obj_size, age, true, &_old_lab);
}
}
}
// This is the promotion failed test, and code handling.
// The code belongs here for two reasons. It is slightly
// different than the code below, and cannot share the
// CAS testing code. Keeping the code here also minimizes
// the impact on the common case fast path code.
if (new_obj == NULL) {
_old_gen_is_full = true;
return oop_promotion_failed(o, test_mark);
}
}
}
assert(new_obj != NULL, "allocation should have succeeded");
// Copy obj
Copy::aligned_disjoint_words((HeapWord*)o, (HeapWord*)new_obj, new_obj_size);
// Now we have to CAS in the header.
// Make copy visible to threads reading the forwardee.
if (o->cas_forward_to(new_obj, test_mark, memory_order_release)) {
// We won any races, we "own" this object.
assert(new_obj == o->forwardee(), "Sanity");
// Increment age if obj still in new generation. Now that
// we're dealing with a markWord that cannot change, it is
// okay to use the non mt safe oop methods.
if (!new_obj_is_tenured) {
new_obj->incr_age();
assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj");
}
// Do the size comparison first with new_obj_size, which we
// already have. Hopefully, only a few objects are larger than
// _min_array_size_for_chunking, and most of them will be arrays.
// So, the is->objArray() test would be very infrequent.
if (new_obj_size > _min_array_size_for_chunking &&
new_obj->is_objArray() &&
PSChunkLargeArrays) {
// we'll chunk it
oop* const masked_o = mask_chunked_array_oop(o);
push_depth(masked_o);
TASKQUEUE_STATS_ONLY(++_arrays_chunked; ++_masked_pushes);
} else {
// we'll just push its contents
push_contents(new_obj);
}
} else {
// We lost, someone else "owns" this object
guarantee(o->is_forwarded(), "Object must be forwarded if the cas failed.");
// Try to deallocate the space. If it was directly allocated we cannot
// deallocate it, so we have to test. If the deallocation fails,
// overwrite with a filler object.
if (new_obj_is_tenured) {
if (!_old_lab.unallocate_object((HeapWord*) new_obj, new_obj_size)) {
CollectedHeap::fill_with_object((HeapWord*) new_obj, new_obj_size);
}
} else if (!_young_lab.unallocate_object((HeapWord*) new_obj, new_obj_size)) {
CollectedHeap::fill_with_object((HeapWord*) new_obj, new_obj_size);
}
// don't update this before the unallocation!
// Using acquire though consume would be accurate for accessing new_obj.
new_obj = o->forwardee_acquire();
}
} else {
assert(o->is_forwarded(), "Sanity");
new_obj = o->forwardee_acquire();
}
// This code must come after the CAS test, or it will print incorrect
// information.
log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
should_scavenge(&new_obj) ? "copying" : "tenuring",
new_obj->klass()->internal_name(), p2i((void *)o), p2i((void *)new_obj), new_obj->size());
return new_obj;
}
// Attempt to "claim" oop at p via CAS, push the new obj if successful
// This version tests the oop* to make sure it is within the heap before
// attempting marking.
template <class T, bool promote_immediately>
inline void PSPromotionManager::copy_and_push_safe_barrier(T* p) {
assert(should_scavenge(p, true), "revisiting object?");
oop o = RawAccess<IS_NOT_NULL>::oop_load(p);
oop new_obj = o->is_forwarded()
? o->forwardee()
: copy_to_survivor_space<promote_immediately>(o);
// This code must come after the CAS test, or it will print incorrect
// information.
if (log_develop_is_enabled(Trace, gc, scavenge) && o->is_forwarded()) {
/**代码未完, 请加载全部代码(NowJava.com).**/