/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/parallel/adjoiningGenerationsForHeteroHeap.hpp"
#include "gc/parallel/adjoiningVirtualSpaces.hpp"
#include "gc/parallel/parallelArguments.hpp"
#include "gc/parallel/parallelScavengeHeap.hpp"
#include "gc/parallel/psFileBackedVirtualspace.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/resourceArea.hpp"
#include "utilities/align.hpp"
#include "utilities/ostream.hpp"
// Create two virtual spaces (HeteroVirtualSpaces), low() on nv-dimm memory, high() on dram.
// create ASPSOldGen and ASPSYoungGen the same way as in base class
AdjoiningGenerationsForHeteroHeap::AdjoiningGenerationsForHeteroHeap(ReservedSpace old_young_rs) :
_total_size_limit(ParallelArguments::heap_max_size_bytes()) {
size_t init_old_byte_size = OldSize;
size_t min_old_byte_size = MinOldSize;
size_t max_old_byte_size = MaxOldSize;
size_t init_young_byte_size = NewSize;
size_t min_young_byte_size = MinNewSize;
size_t max_young_byte_size = MaxNewSize;
// create HeteroVirtualSpaces which is composed of non-overlapping virtual spaces.
HeteroVirtualSpaces* hetero_virtual_spaces = new HeteroVirtualSpaces(old_young_rs, min_old_byte_size,
min_young_byte_size, _total_size_limit);
assert(min_old_byte_size <= init_old_byte_size &&
init_old_byte_size <= max_old_byte_size, "Parameter check");
assert(min_young_byte_size <= init_young_byte_size &&
init_young_byte_size <= max_young_byte_size, "Parameter check");
assert(UseAdaptiveGCBoundary, "Should be used only when UseAdaptiveGCBoundary is true");
// Initialize the virtual spaces. Then pass a virtual space to each generation
// for initialization of the generation.
// Does the actual creation of the virtual spaces
hetero_virtual_spaces->initialize(max_old_byte_size, init_old_byte_size, init_young_byte_size);
_young_gen = new ASPSYoungGen(hetero_virtual_spaces->high(),
hetero_virtual_spaces->high()->committed_size() /* intial_size */,
min_young_byte_size,
hetero_virtual_spaces->max_young_size());
_old_gen = new ASPSOldGen(hetero_virtual_spaces->low(),
hetero_virtual_spaces->low()->committed_size() /* intial_size */,
min_old_byte_size,
hetero_virtual_spaces->max_old_size(), "old", 1);
young_gen()->initialize_work();
assert(young_gen()->reserved().byte_size() <= young_gen()->gen_size_limit(), "Consistency check");
assert(old_young_rs.size() >= young_gen()->gen_size_limit(), "Consistency check");
old_gen()->initialize_work("old", 1);
assert(old_gen()->reserved().byte_size() <= old_gen()->gen_size_limit(), "Consistency check");
assert(old_young_rs.size() >= old_gen()->gen_size_limit(), "Consistency check");
_virtual_spaces = hetero_virtual_spaces;
}
size_t AdjoiningGenerationsForHeteroHeap::required_reserved_memory() {
// This is the size that young gen can grow to, when AdaptiveGCBoundary is true.
size_t max_yg_size = ParallelArguments::heap_max_size_bytes() - MinOldSize;
// This is the size that old gen can grow to, when AdaptiveGCBoundary is true.
size_t max_old_size = ParallelArguments::heap_max_size_bytes() - MinNewSize;
return max_yg_size + max_old_size;
}
// We override this function since size of reservedspace here is more than heap size and
// callers expect this function to return heap size.
size_t AdjoiningGenerationsForHeteroHeap::reserved_byte_size() {
return total_size_limit();
}
AdjoiningGenerationsForHeteroHeap::HeteroVirtualSpaces::HeteroVirtualSpaces(ReservedSpace rs, size_t min_old_byte_size, size_t min_yg_byte_size, size_t max_total_size) :
AdjoiningVirtualSpaces(rs, min_old_byte_size, min_yg_byte_size, GenAlignment),
_max_total_size(max_total_size),
_min_old_byte_size(min_old_byte_size),
_min_young_byte_size(min_yg_byte_size),
_max_old_byte_size(_max_total_size - _min_young_byte_size),
_max_young_byte_size(_max_total_size - _min_old_byte_size) {
}
void AdjoiningGenerationsForHeteroHeap::HeteroVirtualSpaces::initialize(size_t initial_old_reserved_size, size_t init_old_byte_size,
size_t init_young_byte_size) {
// This is the reserved space exclusively for old generation.
ReservedSpace low_rs = _reserved_space.first_part(_max_old_byte_size, true);
// Intially we only assign 'initial_old_reserved_size' of the reserved space to old virtual space.
low_rs = low_rs.first_part(initial_old_reserved_size);
// This is the reserved space exclusively for young generation.
ReservedSpace high_rs = _reserved_space.last_part(_max_old_byte_size).first_part(_max_young_byte_size);
// Carve out 'initial_young_reserved_size' of reserved space.
size_t initial_young_reserved_size = _max_total_size - initial_old_reserved_size;
high_rs = high_rs.last_part(_max_young_byte_size - initial_young_reserved_size);
_low = new PSFileBackedVirtualSpace(low_rs, alignment(), AllocateOldGenAt);
if (!static_cast <PSFileBackedVirtualSpace*>(_low)->initialize()) {
vm_exit_during_initialization("Could not map space for old generation at given AllocateOldGenAt path");
}
if (!_low->expand_by(init_old_byte_size)) {
vm_exit_during_initialization("Could not reserve enough space for object heap");
}
_high = new PSVirtualSpaceHighToLow(high_rs, alignment());
if (!_high->expand_by(init_young_byte_size)) {
vm_exit_during_initialization("Could not reserve enough space for object heap");
}
}
// Since the virtual spaces are non-overlapping, there is no boundary as such.
// We replicate the same behavior and maintain the same invariants as base class 'AdjoiningVirtualSpaces' by
// increasing old generation size and decreasing young generation size by same amount.
bool AdjoiningGenerationsForHeteroHeap::HeteroVirtualSpaces::adjust_boundary_up(size_t change_in_bytes) {
assert(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary, "runtime check");
DEBUG_ONLY(size_t total_size_before = young_vs()->reserved_size() + old_vs()->reserved_size());
size_t bytes_needed = change_in_bytes;
size_t uncommitted_in_old = MIN2(old_vs()->uncommitted_size(), bytes_needed);
bool old_expanded = false;
// 1. Try to expand old within its reserved space.
if (uncommitted_in_old != 0) {
if (!old_vs()->expand_by(uncommitted_in_old)) {
return false;
}
old_expanded = true;
bytes_needed -= uncommitted_in_old;
if (bytes_needed == 0) {
return true;
}
}
size_t bytes_to_add_in_old = 0;
// 2. Get uncommitted memory from Young virtualspace.
size_t young_uncommitted = MIN2(young_vs()->uncommitted_size(), bytes_needed);
if (young_uncommitted > 0) {
young_vs()->set_reserved(young_vs()->reserved_low_addr() + young_uncommitted,
young_vs()->reserved_high_addr(),
young_vs()->special());
bytes_needed -= young_uncommitted;
bytes_to_add_in_old = young_uncommitted;
}
// 3. Get committed memory from Young virtualspace
if (bytes_needed > 0) {
size_t shrink_size = align_down(bytes_needed, young_vs()->alignment());
bool ret = young_vs()->shrink_by(shrink_size);
assert(ret, "We should be able to shrink young space");
young_vs()->set_reserved(young_vs()->reserved_low_addr() + shrink_size,
young_vs()->reserved_high_addr(),
young_vs()->special());
bytes_to_add_in_old += shrink_size;
}
// 4. Increase size of old space
old_vs()->set_reserved(old_vs()->reserved_low_addr(),
old_vs()->reserved_high_addr() + bytes_to_add_in_old,
old_vs()->special());
if (!old_vs()->expand_by(bytes_to_add_in_old) && !old_expanded) {
return false;
}
DEBUG_ONLY(size_t total_size_after = young_vs()->reserved_size() + old_vs()->reserved_size());
assert(total_size_after == total_size_before, "should be equal");
return true;
}
// Read comment for adjust_boundary_up()
// Increase young generation size and decrease old generation size by same amount.
bool AdjoiningGenerationsForHeteroHeap::HeteroVirtualSpaces::adjust_boundary_down(size_t change_in_bytes) {
assert(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary, "runtime check");
DEBUG_ONLY(size_t total_size_before = young_vs()->reserved_size() + old_vs()->reserved_size());
size_t bytes_needed = change_in_bytes;
size_t uncommitted_in_young = MIN2(young_vs()->uncommitted_size(), bytes_needed);
bool young_expanded = false;
// 1. Try to expand old within its reserved space.
if (uncommitted_in_young > 0) {
if (!young_vs()->expand_by(uncommitted_in_young)) {
return false;
}
young_expanded = true;
bytes_needed -= uncommitted_in_young;
if (bytes_needed == 0) {
return true;
}
}
size_t bytes_to_add_in_young = 0;
// 2. Get uncommitted memory from Old virtualspace.
size_t old_uncommitted = MIN2(old_vs()->uncommitted_size(), bytes_needed);
if (old_uncommitted > 0) {
old_vs()->set_reserved(old_vs()->reserved_low_addr(),
old_vs()->reserved_high_addr() - old_uncommitted,
/**代码未完, 请加载全部代码(NowJava.com).**/