/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_G1_G1COLLECTEDHEAP_HPP
#define SHARE_GC_G1_G1COLLECTEDHEAP_HPP
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1BiasedArray.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1CollectionSet.hpp"
#include "gc/g1/g1CollectorState.hpp"
#include "gc/g1/g1ConcurrentMark.hpp"
#include "gc/g1/g1EdenRegions.hpp"
#include "gc/g1/g1EvacFailure.hpp"
#include "gc/g1/g1EvacStats.hpp"
#include "gc/g1/g1EvacuationInfo.hpp"
#include "gc/g1/g1GCPhaseTimes.hpp"
#include "gc/g1/g1HeapTransition.hpp"
#include "gc/g1/g1HeapVerifier.hpp"
#include "gc/g1/g1HRPrinter.hpp"
#include "gc/g1/g1HeapRegionAttr.hpp"
#include "gc/g1/g1MonitoringSupport.hpp"
#include "gc/g1/g1NUMA.hpp"
#include "gc/g1/g1RedirtyCardsQueue.hpp"
#include "gc/g1/g1SurvivorRegions.hpp"
#include "gc/g1/g1YCTypes.hpp"
#include "gc/g1/heapRegionManager.hpp"
#include "gc/g1/heapRegionSet.hpp"
#include "gc/g1/heterogeneousHeapRegionManager.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/gcHeapSummary.hpp"
#include "gc/shared/plab.hpp"
#include "gc/shared/preservedMarks.hpp"
#include "gc/shared/softRefPolicy.hpp"
#include "memory/memRegion.hpp"
#include "utilities/stack.hpp"
// A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
// It uses the "Garbage First" heap organization and algorithm, which
// may combine concurrent marking with parallel, incremental compaction of
// heap subsets that will yield large amounts of garbage.
// Forward declarations
class HeapRegion;
class GenerationSpec;
class G1ParScanThreadState;
class G1ParScanThreadStateSet;
class G1ParScanThreadState;
class MemoryPool;
class MemoryManager;
class ObjectClosure;
class SpaceClosure;
class CompactibleSpaceClosure;
class Space;
class G1CardTableEntryClosure;
class G1CollectionSet;
class G1Policy;
class G1HotCardCache;
class G1RemSet;
class G1YoungRemSetSamplingThread;
class G1ConcurrentMark;
class G1ConcurrentMarkThread;
class G1ConcurrentRefine;
class GenerationCounters;
class STWGCTimer;
class G1NewTracer;
class EvacuationFailedInfo;
class nmethod;
class WorkGang;
class G1Allocator;
class G1ArchiveAllocator;
class G1FullGCScope;
class G1HeapVerifier;
class G1HeapSizingPolicy;
class G1HeapSummary;
class G1EvacSummary;
typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
// The G1 STW is alive closure.
// An instance is embedded into the G1CH and used as the
// (optional) _is_alive_non_header closure in the STW
// reference processor. It is also extensively used during
// reference processing during STW evacuation pauses.
class G1STWIsAliveClosure : public BoolObjectClosure {
G1CollectedHeap* _g1h;
public:
G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
bool do_object_b(oop p);
};
class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure {
G1CollectedHeap* _g1h;
public:
G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
bool do_object_b(oop p);
};
class G1RegionMappingChangedListener : public G1MappingChangedListener {
private:
void reset_from_card_cache(uint start_idx, size_t num_regions);
public:
virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
};
class G1CollectedHeap : public CollectedHeap {
friend class VM_CollectForMetadataAllocation;
friend class VM_G1CollectForAllocation;
friend class VM_G1CollectFull;
friend class VM_G1TryInitiateConcMark;
friend class VMStructs;
friend class MutatorAllocRegion;
friend class G1FullCollector;
friend class G1GCAllocRegion;
friend class G1HeapVerifier;
// Closures used in implementation.
friend class G1ParScanThreadState;
friend class G1ParScanThreadStateSet;
friend class G1EvacuateRegionsTask;
friend class G1PLABAllocator;
// Other related classes.
friend class HeapRegionClaimer;
// Testing classes.
friend class G1CheckRegionAttrTableClosure;
private:
G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
WorkGang* _workers;
G1CardTable* _card_table;
SoftRefPolicy _soft_ref_policy;
static size_t _humongous_object_threshold_in_words;
// These sets keep track of old, archive and humongous regions respectively.
HeapRegionSet _old_set;
HeapRegionSet _archive_set;
HeapRegionSet _humongous_set;
void eagerly_reclaim_humongous_regions();
// Start a new incremental collection set for the next pause.
void start_new_collection_set();
// The block offset table for the G1 heap.
G1BlockOffsetTable* _bot;
// Tears down the region sets / lists so that they are empty and the
// regions on the heap do not belong to a region set / list. The
// only exception is the humongous set which we leave unaltered. If
// free_list_only is true, it will only tear down the master free
// list. It is called before a Full GC (free_list_only == false) or
// before heap shrinking (free_list_only == true).
void tear_down_region_sets(bool free_list_only);
// Rebuilds the region sets / lists so that they are repopulated to
// reflect the contents of the heap. The only exception is the
// humongous set which was not torn down in the first place. If
// free_list_only is true, it will only rebuild the master free
// list. It is called after a Full GC (free_list_only == false) or
// after heap shrinking (free_list_only == true).
void rebuild_region_sets(bool free_list_only);
// Callback for region mapping changed events.
G1RegionMappingChangedListener _listener;
// Handle G1 NUMA support.
G1NUMA* _numa;
// The sequence of all heap regions in the heap.
HeapRegionManager* _hrm;
// Manages all allocations with regions except humongous object allocations.
G1Allocator* _allocator;
// Manages all heap verification.
G1HeapVerifier* _verifier;
// Outside of GC pauses, the number of bytes used in all regions other
// than the current allocation region(s).
volatile size_t _summary_bytes_used;
void increase_used(size_t bytes);
void decrease_used(size_t bytes);
void set_used(size_t bytes);
// Number of bytes used in all regions during GC. Typically changed when
// retiring a GC alloc region.
size_t _bytes_used_during_gc;
// Class that handles archive allocation ranges.
G1ArchiveAllocator* _archive_allocator;
// GC allocation statistics policy for survivors.
G1EvacStats _survivor_evac_stats;
// GC allocation statistics policy for tenured objects.
G1EvacStats _old_evac_stats;
// It specifies whether we should attempt to expand the heap after a
// region allocation failure. If heap expansion fails we set this to
// false so that we don't re-attempt the heap expansion (it's likely
// that subsequent expansion attempts will also fail if one fails).
// Currently, it is only consulted during GC and it's reset at the
// start of each GC.
bool _expand_heap_after_alloc_failure;
// Helper for monitoring and management support.
G1MonitoringSupport* _g1mm;
// Records whether the region at the given index is (still) a
// candidate for eager reclaim. Only valid for humongous start
// regions; other regions have unspecified values. Humongous start
// regions are initialized at start of collection pause, with
// candidates removed from the set as they are found reachable from
// roots or the young generation.
class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
protected:
bool default_value() const { return false; }
public:
void clear() { G1BiasedMappedArray<bool>::clear(); }
void set_candidate(uint region, bool value) {
set_by_index(region, value);
}
bool is_candidate(uint region) {
return get_by_index(region);
}
};
HumongousReclaimCandidates _humongous_reclaim_candidates;
// Stores whether during humongous object registration we found candidate regions.
// If not, we can skip a few steps.
bool _has_humongous_reclaim_candidates;
G1HRPrinter _hr_printer;
// Return true if an explicit GC should start a concurrent cycle instead
// of doing a STW full GC. A concurrent cycle should be started if:
// (a) cause == _g1_humongous_allocation,
// (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent,
// (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent,
// (d) cause == _wb_conc_mark,
// (e) cause == _g1_periodic_collection and +G1PeriodicGCInvokesConcurrent.
bool should_do_concurrent_full_gc(GCCause::Cause cause);
// Attempt to start a concurrent cycle with the indicated cause.
// precondition: should_do_concurrent_full_gc(cause)
bool try_collect_concurrently(GCCause::Cause cause,
uint gc_counter,
uint old_marking_started_before);
// Return true if should upgrade to full gc after an incremental one.
bool should_upgrade_to_full_gc(GCCause::Cause cause);
// indicates whether we are in young or mixed GC mode
G1CollectorState _collector_state;
// Keeps track of how many "old marking cycles" (i.e., Full GCs or
// concurrent cycles) we have started.
volatile uint _old_marking_cycles_started;
// Keeps track of how many "old marking cycles" (i.e., Full GCs or
// concurrent cycles) we have completed.
volatile uint _old_marking_cycles_completed;
// This is a non-product method that is helpful for testing. It is
// called at the end of a GC and artificially expands the heap by
// allocating a number of dead regions. This way we can induce very
// frequent marking cycles and stress the cleanup / concurrent
// cleanup code more (as all the regions that will be allocated by
// this method will be found dead by the marking cycle).
void allocate_dummy_regions() PRODUCT_RETURN;
// If the HR printer is active, dump the state of the regions in the
// heap after a compaction.
void print_hrm_post_compaction();
// Create a memory mapper for auxiliary data structures of the given size and
// translation factor.
static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
size_t size,
size_t translation_factor);
void trace_heap(GCWhen::Type when, const GCTracer* tracer);
// These are macros so that, if the assert fires, we get the correct
// line number, file, etc.
#define heap_locking_asserts_params(_extra_message_) \
"%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
(_extra_message_), \
BOOL_TO_STR(Heap_lock->owned_by_self()), \
BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
BOOL_TO_STR(Thread::current()->is_VM_thread())
#define assert_heap_locked() \
do { \
assert(Heap_lock->owned_by_self(), \
heap_locking_asserts_params("should be holding the Heap_lock")); \
} while (0)
#define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
do { \
assert(Heap_lock->owned_by_self() || \
(SafepointSynchronize::is_at_safepoint() && \
((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
heap_locking_asserts_params("should be holding the Heap_lock or " \
"should be at a safepoint")); \
} while (0)
#define assert_heap_locked_and_not_at_safepoint() \
do { \
assert(Heap_lock->owned_by_self() && \
!SafepointSynchronize::is_at_safepoint(), \
heap_locking_asserts_params("should be holding the Heap_lock and " \
"should not be at a safepoint")); \
} while (0)
#define assert_heap_not_locked() \
do { \
assert(!Heap_lock->owned_by_self(), \
heap_locking_asserts_params("should not be holding the Heap_lock")); \
} while (0)
#define assert_heap_not_locked_and_not_at_safepoint() \
do { \
assert(!Heap_lock->owned_by_self() && \
!SafepointSynchronize::is_at_safepoint(), \
heap_locking_asserts_params("should not be holding the Heap_lock and " \
"should not be at a safepoint")); \
} while (0)
#define assert_at_safepoint_on_vm_thread() \
do { \
assert_at_safepoint(); \
assert(Thread::current_or_null() != NULL, "no current thread"); \
assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \
} while (0)
#ifdef ASSERT
#define assert_used_and_recalculate_used_equal(g1h) \
do { \
size_t cur_used_bytes = g1h->used(); \
size_t recal_used_bytes = g1h->recalculate_used(); \
assert(cur_used_bytes == recal_used_bytes, "Used(" SIZE_FORMAT ") is not" \
" same as recalculated used(" SIZE_FORMAT ").", \
cur_used_bytes, recal_used_bytes); \
} while (0)
#else
#define assert_used_and_recalculate_used_equal(g1h) do {} while(0)
#endif
const char* young_gc_name() const;
// The young region list.
G1EdenRegions _eden;
G1SurvivorRegions _survivor;
STWGCTimer* _gc_timer_stw;
G1NewTracer* _gc_tracer_stw;
// The current policy object for the collector.
G1Policy* _policy;
G1HeapSizingPolicy* _heap_sizing_policy;
G1CollectionSet _collection_set;
// Try to allocate a single non-humongous HeapRegion sufficient for
// an allocation of the given word_size. If do_expand is true,
// attempt to expand the heap if necessary to satisfy the allocation
// request. 'type' takes the type of region to be allocated. (Use constants
// Old, Eden, Humongous, Survivor defined in HeapRegionType.)
HeapRegion* new_region(size_t word_size,
HeapRegionType type,
bool do_expand,
uint node_index = G1NUMA::AnyNodeIndex);
// Initialize a contiguous set of free regions of length num_regions
// and starting at index first so that they appear as a single
// humongous region.
HeapWord* humongous_obj_allocate_initialize_regions(uint first,
uint num_regions,
size_t word_size);
// Attempt to allocate a humongous object of the given size. Return
// NULL if unsuccessful.
HeapWord* humongous_obj_allocate(size_t word_size);
// The following two methods, allocate_new_tlab() and
// mem_allocate(), are the two main entry points from the runtime
// into the G1's allocation routines. They have the following
// assumptions:
//
// * They should both be called outside safepoints.
//
// * They should both be called without holding the Heap_lock.
//
// * All allocation requests for new TLABs should go to
// allocate_new_tlab().
//
// * All non-TLAB allocation requests should go to mem_allocate().
//
// * If either call cannot satisfy the allocation request using the
// current allocating region, they will try to get a new one. If
// this fails, they will attempt to do an evacuation pause and
// retry the allocation.
//
// * If all allocation attempts fail, even after trying to schedule
// an evacuation pause, allocate_new_tlab() will return NULL,
// whereas mem_allocate() will attempt a heap expansion and/or
// schedule a Full GC.
//
// * We do not allow humongous-sized TLABs. So, allocate_new_tlab
// should never be called with word_size being humongous. All
// humongous allocation requests should go to mem_allocate() which
// will satisfy them with a special path.
virtual HeapWord* allocate_new_tlab(size_t min_size,
size_t requested_size,
size_t* actual_size);
virtual HeapWord* mem_allocate(size_t word_size,
bool* gc_overhead_limit_was_exceeded);
// First-level mutator allocation attempt: try to allocate out of
// the mutator alloc region without taking the Heap_lock. This
// should only be used for non-humongous allocations.
inline HeapWord* attempt_allocation(size_t min_word_size,
size_t desired_word_size,
size_t* actual_word_size);
// Second-level mutator allocation attempt: take the Heap_lock and
// retry the allocation attempt, potentially scheduling a GC
// pause. This should only be used for non-humongous allocations.
HeapWord* attempt_allocation_slow(size_t word_size);
// Takes the Heap_lock and attempts a humongous allocation. It can
// potentially schedule a GC pause.
HeapWord* attempt_allocation_humongous(size_t word_size);
// Allocation attempt that should be called during safepoints (e.g.,
// at the end of a successful GC). expect_null_mutator_alloc_region
// specifies whether the mutator alloc region is expected to be NULL
// or not.
HeapWord* attempt_allocation_at_safepoint(size_t word_size,
bool expect_null_mutator_alloc_region);
// These methods are the "callbacks" from the G1AllocRegion class.
// For mutator alloc regions.
HeapRegion* new_mutator_alloc_region(size_t word_size, bool force, uint node_index);
void retire_mutator_alloc_region(HeapRegion* alloc_region,
size_t allocated_bytes);
// For GC alloc regions.
bool has_more_regions(G1HeapRegionAttr dest);
HeapRegion* new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index);
void retire_gc_alloc_region(HeapRegion* alloc_region,
size_t allocated_bytes, G1HeapRegionAttr dest);
// - if explicit_gc is true, the GC is for a System.gc() etc,
// otherwise it's for a failed allocation.
// - if clear_all_soft_refs is true, all soft references should be
// cleared during the GC.
// - it returns false if it is unable to do the collection due to the
// GC locker being active, true otherwise.
bool do_full_collection(bool explicit_gc,
bool clear_all_soft_refs);
// Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
virtual void do_full_collection(bool clear_all_soft_refs);
// Callback from VM_G1CollectForAllocation operation.
// This function does everything necessary/possible to satisfy a
// failed allocation request (including collection, expansion, etc.)
HeapWord* satisfy_failed_allocation(size_t word_size,
bool* succeeded);
// Internal helpers used during full GC to split it up to
// increase readability.
void abort_concurrent_cycle();
void verify_before_full_collection(bool explicit_gc);
void prepare_heap_for_full_collection();
void prepare_heap_for_mutators();
void abort_refinement();
void verify_after_full_collection();
void print_heap_after_full_collection(G1HeapTransition* heap_transition);
// Helper method for satisfy_failed_allocation()
HeapWord* satisfy_failed_allocation_helper(size_t word_size,
bool do_gc,
bool clear_all_soft_refs,
bool expect_null_mutator_alloc_region,
bool* gc_succeeded);
// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size". If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".
HeapWord* expand_and_allocate(size_t word_size);
// Process any reference objects discovered.
void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
// If during an initial mark pause we may install a pending list head which is not
// otherwise reachable ensure that it is marked in the bitmap for concurrent marking
// to discover.
void make_pending_list_reachable();
// Merges the information gathered on a per-thread basis for all worker threads
// during GC into global variables.
void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
void verify_numa_regions(const char* desc);
public:
G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
WorkGang* workers() const { return _workers; }
// Runs the given AbstractGangTask with the current active workers, returning the
// total time taken.
Tickspan run_task(AbstractGangTask* task);
G1Allocator* allocator() {
return _allocator;
}
G1HeapVerifier* verifier() {
return _verifier;
}
G1MonitoringSupport* g1mm() {
assert(_g1mm != NULL, "should have been initialized");
return _g1mm;
}
void resize_heap_if_necessary();
G1NUMA* numa() const { return _numa; }
// Expand the garbage-first heap by at least the given size (in bytes!).
// Returns true if the heap was expanded by the requested amount;
// false otherwise.
// (Rounds up to a HeapRegion boundary.)
bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
bool expand_single_region(uint node_index);
// Returns the PLAB statistics for a given destination.
inline G1EvacStats* alloc_buffer_stats(G1HeapRegionAttr dest);
// Determines PLAB size for a given destination.
inline size_t desired_plab_sz(G1HeapRegionAttr dest);
// Do anything common to GC's.
void gc_prologue(bool full);
void gc_epilogue(bool full);
// Does the given region fulfill remembered set based eager reclaim candidate requirements?
bool is_potential_eager_reclaim_candidate(HeapRegion* r) const;
// Modify the reclaim candidate set and test for presence.
// These are only valid for starts_humongous regions.
inline void set_humongous_reclaim_candidate(uint region, bool value);
inline bool is_humongous_reclaim_candidate(uint region);
inline void set_has_humongous_reclaim_candidate(bool value);
// Remove from the reclaim candidate set. Also remove from the
// collection set so that later encounters avoid the slow path.
inline void set_humongous_is_live(oop obj);
// Register the given region to be part of the collection set.
inline void register_humongous_region_with_region_attr(uint index);
// We register a region with the fast "in collection set" test. We
// simply set to true the array slot corresponding to this region.
void register_young_region_with_region_attr(HeapRegion* r) {
_region_attr.set_in_young(r->hrm_index());
}
inline void register_region_with_region_attr(HeapRegion* r);
inline void register_old_region_with_region_attr(HeapRegion* r);
inline void register_optional_region_with_region_attr(HeapRegion* r);
void clear_region_attr(const HeapRegion* hr) {
_region_attr.clear(hr);
}
void clear_region_attr() {
_region_attr.clear();
}
// Verify that the G1RegionAttr remset tracking corresponds to actual remset tracking
// for all regions.
void verify_region_attr_remset_update() PRODUCT_RETURN;
bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
// This is called at the start of either a concurrent cycle or a Full
// GC to update the number of old marking cycles started.
void increment_old_marking_cycles_started();
// This is called at the end of either a concurrent cycle or a Full
// GC to update the number of old marking cycles completed. Those two
// can happen in a nested fashion, i.e., we start a concurrent
// cycle, a Full GC happens half-way through it which ends first,
// and then the cycle notices that a Full GC happened and ends
// too. The concurrent parameter is a boolean to help us do a bit
// tighter consistency checking in the method. If concurrent is
// false, the caller is the inner caller in the nesting (i.e., the
// Full GC). If concurrent is true, the caller is the outer caller
// in this nesting (i.e., the concurrent cycle). Further nesting is
// not currently supported. The end of this call also notifies
// the G1OldGCCount_lock in case a Java thread is waiting for a full
// GC to happen (e.g., it called System.gc() with
// +ExplicitGCInvokesConcurrent).
void increment_old_marking_cycles_completed(bool concurrent);
uint old_marking_cycles_completed() {
return _old_marking_cycles_completed;
}
G1HRPrinter* hr_printer() { return &_hr_printer; }
// Allocates a new heap region instance.
HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
// Allocate the highest free region in the reserved heap. This will commit
// regions as necessary.
HeapRegion* alloc_highest_free_region();
// Frees a region by resetting its metadata and adding it to the free list
// passed as a parameter (this is usually a local list which will be appended
// to the master free list later or NULL if free list management is handled
// in another way).
// Callers must ensure they are the only one calling free on the given region
// at the same time.
void free_region(HeapRegion* hr, FreeRegionList* free_list);
// It dirties the cards that cover the block so that the post
// write barrier never queues anything when updating objects on this
// block. It is assumed (and in fact we assert) that the block
// belongs to a young region.
inline void dirty_young_block(HeapWord* start, size_t word_size);
// Frees a humongous region by collapsing it into individual regions
// and calling free_region() for each of them. The freed regions
// will be added to the free list that's passed as a parameter (this
// is usually a local list which will be appended to the master free
// list later).
// The method assumes that only a single thread is ever calling
// this for a particular region at once.
void free_humongous_region(HeapRegion* hr,
FreeRegionList* free_list);
// Facility for allocating in 'archive' regions in high heap memory and
// recording the allocated ranges. These should all be called from the
// VM thread at safepoints, without the heap lock held. They can be used
// to create and archive a set of heap regions which can be mapped at the
// same fixed addresses in a subsequent JVM invocation.
void begin_archive_alloc_range(bool open = false);
// Check if the requested size would be too large for an archive allocation.
bool is_archive_alloc_too_large(size_t word_size);
// Allocate memory of the requested size from the archive region. This will
// return NULL if the size is too large or if no memory is available. It
// does not trigger a garbage collection.
HeapWord* archive_mem_allocate(size_t word_size);
// Optionally aligns the end address and returns the allocated ranges in
// an array of MemRegions in order of ascending addresses.
void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
size_t end_alignment_in_bytes = 0);
// Facility for allocating a fixed range within the heap and marking
// the containing regions as 'archive'. For use at JVM init time, when the
// caller may mmap archived heap data at the specified range(s).
// Verify that the MemRegions specified in the argument array are within the
// reserved heap.
bool check_archive_addresses(MemRegion* range, size_t count);
// Commit the appropriate G1 regions containing the specified MemRegions
// and mark them as 'archive' regions. The regions in the array must be
// non-overlapping and in order of ascending address.
bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
// Insert any required filler objects in the G1 regions around the specified
// ranges to make the regions parseable. This must be called after
// alloc_archive_regions, and after class loading has occurred.
void fill_archive_regions(MemRegion* range, size_t count);
// For each of the specified MemRegions, uncommit the containing G1 regions
// which had been allocated by alloc_archive_regions. This should be called
// rather than fill_archive_regions at JVM init time if the archive file
// mapping failed, with the same non-overlapping and sorted MemRegion array.
void dealloc_archive_regions(MemRegion* range, size_t count, bool is_open);
oop materialize_archived_object(oop obj);
private:
// Shrink the garbage-first heap by at most the given size (in bytes!).
// (Rounds down to a HeapRegion boundary.)
void shrink(size_t expand_bytes);
void shrink_helper(size_t expand_bytes);
#if TASKQUEUE_STATS
static void print_taskqueue_stats_hdr(outputStream* const st);
void print_taskqueue_stats() const;
void reset_taskqueue_stats();
#endif // TASKQUEUE_STATS
// Schedule the VM operation that will do an evacuation pause to
// satisfy an allocation request of word_size. *succeeded will
// return whether the VM operation was successful (it did do an
// evacuation pause) or not (another thread beat us to it or the GC
// locker was active). Given that we should not be holding the
// Heap_lock when we enter this method, we will pass the
// gc_count_before (i.e., total_collections()) as a parameter since
// it has to be read while holding the Heap_lock. Currently, both
// methods that call do_collection_pause() release the Heap_lock
// before the call, so it's easy to read gc_count_before just before.
HeapWord* do_collection_pause(size_t word_size,
uint gc_count_before,
bool* succeeded,
GCCause::Cause gc_cause);
void wait_for_root_region_scanning();
// The guts of the incremental collection pause, executed by the vm
// thread. It returns false if it is unable to do the collection due
// to the GC locker being active, true otherwise
bool do_collection_pause_at_safepoint(double target_pause_time_ms);
G1HeapVerifier::G1VerifyType young_collection_verify_type() const;
void verify_before_young_collection(G1HeapVerifier::G1VerifyType type);
void verify_after_young_collection(G1HeapVerifier::G1VerifyType type);
void calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms);
// Actually do the work of evacuating the parts of the collection set.
void evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states);
void evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states);
private:
// Evacuate the next set of optional regions.
void evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states);
public:
void pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
void post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
G1RedirtyCardsQueueSet* rdcqs,
G1ParScanThreadStateSet* pss);
void expand_heap_after_young_collection();
// Update object copying statistics.
void record_obj_copy_mem_stats();
// The hot card cache for remembered set insertion optimization.
G1HotCardCache* _hot_card_cache;
// The g1 remembered set of the heap.
G1RemSet* _rem_set;
// After a collection pause, convert the regions in the collection set into free
// regions.
void free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
// Abandon the current collection set without recording policy
// statistics or updating free lists.
void abandon_collection_set(G1CollectionSet* collection_set);
// The concurrent marker (and the thread it runs in.)
G1ConcurrentMark* _cm;
G1ConcurrentMarkThread* _cm_thread;
// The concurrent refiner.
G1ConcurrentRefine* _cr;
// The parallel task queues
RefToScanQueueSet *_task_queues;
// True iff a evacuation has failed in the current collection.
bool _evacuation_failed;
EvacuationFailedInfo* _evacuation_failed_info_array;
// Failed evacuations cause some logical from-space objects to have
// forwarding pointers to themselves. Reset them.
void remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs);
// Restore the objects in the regions in the collection set after an
// evacuation failure.
void restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs);
PreservedMarksSet _preserved_marks_set;
// Preserve the mark of "obj", if necessary, in preparation for its mark
// word being overwritten with a self-forwarding-pointer.
void preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m);
#ifndef PRODUCT
// Support for forcing evacuation failures. Analogous to
// PromotionFailureALot for the other collectors.
// Records whether G1EvacuationFailureALot should be in effect
// for the current GC
bool _evacuation_failure_alot_for_current_gc;
// Used to record the GC number for interval checking when
// determining whether G1EvaucationFailureALot is in effect
// for the current GC.
size_t _evacuation_failure_alot_gc_number;
// Count of the number of evacuations between failures.
volatile size_t _evacuation_failure_alot_count;
// Set whether G1EvacuationFailureALot should be in effect
// for the current GC (based upon the type of GC and which
// command line flags are set);
inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc,
bool during_initial_mark,
bool mark_or_rebuild_in_progress);
inline void set_evacuation_failure_alot_for_current_gc();
// Return true if it's time to cause an evacuation failure.
inline bool evacuation_should_fail();
// Reset the G1EvacuationFailureALot counters. Should be called at
// the end of an evacuation pause in which an evacuation failure occurred.
inline void reset_evacuation_should_fail();
#endif // !PRODUCT
// ("Weak") Reference processing support.
//
// G1 has 2 instances of the reference processor class. One
// (_ref_processor_cm) handles reference object discovery
// and subsequent processing during concurrent marking cycles.
//
// The other (_ref_processor_stw) handles reference object
// discovery and processing during full GCs and incremental
// evacuation pauses.
//
// During an incremental pause, reference discovery will be
// temporarily disabled for _ref_processor_cm and will be
// enabled for _ref_processor_stw. At the end of the evacuation
// pause references discovered by _ref_processor_stw will be
// processed and discovery will be disabled. The previous
// setting for reference object discovery for _ref_processor_cm
// will be re-instated.
//
// At the start of marking:
// * Discovery by the CM ref processor is verified to be inactive
// and it's discovered lists are empty.
// * Discovery by the CM ref processor is then enabled.
//
// At the end of marking:
// * Any references on the CM ref processor's discovered
// lists are processed (possibly MT).
//
// At the start of full GC we:
// * Disable discovery by the CM ref processor and
// empty CM ref processor's discovered lists
// (without processing any entries).
// * Verify that the STW ref processor is inactive and it's
// discovered lists are empty.
// * Temporarily set STW ref processor discovery as single threaded.
// * Temporarily clear the STW ref processor's _is_alive_non_header
// field.
// * Finally enable discovery by the STW ref processor.
//
// The STW ref processor is used to record any discovered
// references during the full GC.
//
// At the end of a full GC we:
// * Enqueue any reference objects discovered by the STW ref processor
// that have non-live referents. This has the side-effect of
// making the STW ref processor inactive by disabling discovery.
// * Verify that the CM ref processor is still inactive
// and no references have been placed on it's discovered
// lists (also checked as a precondition during initial marking).
// The (stw) reference processor...
ReferenceProcessor* _ref_processor_stw;
// During reference object discovery, the _is_alive_non_header
// closure (if non-null) is applied to the referent object to
// determine whether the referent is live. If so then the
// reference object does not need to be 'discovered' and can
// be treated as a regular oop. This has the benefit of reducing
// the number of 'discovered' reference objects that need to
// be processed.
//
// Instance of the is_alive closure for embedding into the
// STW reference processor as the _is_alive_non_header field.
// Supplying a value for the _is_alive_non_header field is
// optional but doing so prevents unnecessary additions to
// the discovered lists during reference discovery.
G1STWIsAliveClosure _is_alive_closure_stw;
G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw;
// The (concurrent marking) reference processor...
ReferenceProcessor* _ref_processor_cm;
// Instance of the concurrent mark is_alive closure for embedding
// into the Concurrent Marking reference processor as the
// _is_alive_non_header field. Supplying a value for the
// _is_alive_non_header field is optional but doing so prevents
// unnecessary additions to the discovered lists during reference
// discovery.
G1CMIsAliveClosure _is_alive_closure_cm;
G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm;
public:
RefToScanQueue *task_queue(uint i) const;
uint num_task_queues() const;
// Create a G1CollectedHeap.
// Must call the initialize method afterwards.
// May not return if something goes wrong.
G1CollectedHeap();
private:
jint initialize_concurrent_refinement();
jint initialize_young_gen_sampling_thread();
public:
// Initialize the G1CollectedHeap to have the initial and
// maximum sizes and remembered and barrier sets
// specified by the policy object.
jint initialize();
virtual void stop();
virtual void safepoint_synchronize_begin();
virtual void safepoint_synchronize_end();
// Does operations required after initialization has been done.
void post_initialize();
// Initialize weak reference processing.
void ref_processing_init();
virtual Name kind() const {
return CollectedHeap::G1;
}
virtual const char* name() const {
return "G1";
}
const G1CollectorState* collector_state() const { return &_collector_state; }
G1CollectorState* collector_state() { return &_collector_state; }
// The current policy object for the collector.
G1Policy* policy() const { return _policy; }
// The remembered set.
G1RemSet* rem_set() const { return _rem_set; }
inline G1GCPhaseTimes* phase_times() const;
HeapRegionManager* hrm() const { return _hrm; }
const G1CollectionSet* collection_set() const { return &_collection_set; }
G1CollectionSet* collection_set() { return &_collection_set; }
virtual SoftRefPolicy* soft_ref_policy();
virtual void initialize_serviceability();
virtual MemoryUsage memory_usage();
virtual GrowableArray<GCMemoryManager*> memory_managers();
virtual GrowableArray<MemoryPool*> memory_pools();
// Try to minimize the remembered set.
void scrub_rem_set();
// Apply the given closure on all cards in the Hot Card Cache, emptying it.
void iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id);
// The shared block offset table array.
G1BlockOffsetTable* bot() const { return _bot; }
// Reference Processing accessors
// The STW reference processor....
ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
// The Concurrent Marking reference processor...
ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
size_t unused_committed_regions_in_bytes() const;
virtual size_t capacity() const;
virtual size_t used() const;
// This should be called when we're not holding the heap lock. The
// result might be a bit inaccurate.
size_t used_unlocked() const;
size_t recalculate_used() const;
// These virtual functions do the actual allocation.
// Some heaps may offer a contiguous region for shared non-blocking
// allocation, via inlined code (by exporting the address of the top and
// end fields defining the extent of the contiguous allocation region.)
// But G1CollectedHeap doesn't yet support this.
virtual bool is_maximal_no_gc() const {
return _hrm->available() == 0;
}
// Returns whether there are any regions left in the heap for allocation.
bool has_regions_left_for_allocation() const {
return !is_maximal_no_gc() || num_free_regions() != 0;
}
// The current number of regions in the heap.
uint num_regions() const { return _hrm->length(); }
// The max number of regions in the heap.
uint max_regions() const { return _hrm->max_length(); }
// Max number of regions that can be comitted.
uint max_expandable_regions() const { return _hrm->max_expandable_length(); }
// The number of regions that are completely free.
uint num_free_regions() const { return _hrm->num_free_regions(); }
// The number of regions that can be allocated into.
uint num_free_or_available_regions() const { return num_free_regions() + _hrm->available(); }
MemoryUsage get_auxiliary_data_memory_usage() const {
return _hrm->get_auxiliary_data_memory_usage();
}
// The number of regions that are not completely free.
uint num_used_regions() const { return num_regions() - num_free_regions(); }
#ifdef ASSERT
bool is_on_master_free_list(HeapRegion* hr) {
return _hrm->is_free(hr);
}
#endif // ASSERT
inline void old_set_add(HeapRegion* hr);
inline void old_set_remove(HeapRegion* hr);
inline void archive_set_add(HeapRegion* hr);
size_t non_young_capacity_bytes() {
return (old_regions_count() + _archive_set.length() + humongous_regions_count()) * HeapRegion::GrainBytes;
}
// Determine whether the given region is one that we are using as an
// old GC alloc region.
bool is_old_gc_alloc_region(HeapRegion* hr);
// Perform a collection of the heap; intended for use in implementing
// "System.gc". This probably implies as full a collection as the
// "CollectedHeap" supports.
virtual void collect(GCCause::Cause cause);
// Perform a collection of the heap with the given cause.
// Returns whether this collection actually executed.
bool try_collect(GCCause::Cause cause);
// True iff an evacuation has failed in the most-recent collection.
bool evacuation_failed() { return _evacuation_failed; }
void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
void prepend_to_freelist(FreeRegionList* list);
void decrement_summary_bytes(size_t bytes);
virtual bool is_in(const void* p) const;
#ifdef ASSERT
// Returns whether p is in one of the available areas of the heap. Slow but
// extensive version.
bool is_in_exact(const void* p) const;
#endif
// Return "TRUE" iff the given object address is within the collection
// set. Assumes that the reference points into the heap.
inline bool is_in_cset(const HeapRegion *hr);
inline bool is_in_cset(oop obj);
inline bool is_in_cset(HeapWord* addr);
inline bool is_in_cset_or_humongous(const oop obj);
private:
// This array is used for a quick test on whether a reference points into
// the collection set or not. Each of the array's elements denotes whether the
// corresponding region is in the collection set or not.
G1HeapRegionAttrBiasedMappedArray _region_attr;
public:
inline G1HeapRegionAttr region_attr(const void* obj) const;
inline G1HeapRegionAttr region_attr(uint idx) const;
// Return "TRUE" iff the given object address is in the reserved
// region of g1.
bool is_in_g1_reserved(const void* p) const {
return _hrm->reserved().contains(p);
}
// Returns a MemRegion that corresponds to the space that has been
// reserved for the heap
MemRegion g1_reserved() const {
return _hrm->reserved();
}
MemRegion reserved_region() const {
return _reserved;
}
HeapWord* base() const {
return _reserved.start();
}
bool is_in_reserved(const void* addr) const {
return _reserved.contains(addr);
}
G1HotCardCache* hot_card_cache() const { return _hot_card_cache; }
G1CardTable* card_table() const {
return _card_table;
}
// Iteration functions.
// Iterate over all objects, calling "cl.do_object" on each.
virtual void object_iterate(ObjectClosure* cl);
// Keep alive an object that was loaded with AS_NO_KEEPALIVE.
virtual void keep_alive(oop obj);
// Iterate over heap regions, in address order, terminating the
// iteration early if the "do_heap_region" method returns "true".
void heap_region_iterate(HeapRegionClosure* blk) const;
// Return the region with the given index. It assumes the index is valid.
inline HeapRegion* region_at(uint index) const;
inline HeapRegion* region_at_or_null(uint index) const;
// Return the next region (by index) that is part of the same
// humongous object that hr is part of.
inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
// Calculate the region index of the given address. Given address must be
// within the heap.
inline uint addr_to_region(HeapWord* addr) const;
inline HeapWord* bottom_addr_for_region(uint index) const;
// Two functions to iterate over the heap regions in parallel. Threads
// compete using the HeapRegionClaimer to claim the regions before
// applying the closure on them.
// The _from_worker_offset version uses the HeapRegionClaimer and
// the worker id to calculate a start offset to prevent all workers to
// start from the point.
void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
HeapRegionClaimer* hrclaimer,
uint worker_id) const;
void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
HeapRegionClaimer* hrclaimer) const;
// Iterate over all regions in the collection set in parallel.
void collection_set_par_iterate_all(HeapRegionClosure* cl,
HeapRegionClaimer* hr_claimer,
uint worker_id);
// Iterate over all regions currently in the current collection set.
void collection_set_iterate_all(HeapRegionClosure* blk);
// Iterate over the regions in the current increment of the collection set.
// Starts the iteration so that the start regions of a given worker id over the
// set active_workers are evenly spread across the set of collection set regions
// to be iterated.
// The variant with the HeapRegionClaimer guarantees that the closure will be
// applied to a particular region exactly once.
void collection_set_iterate_increment_from(HeapRegionClosure *blk, uint worker_id) {
collection_set_iterate_increment_from(blk, NULL, worker_id);
}
void collection_set_iterate_increment_from(HeapRegionClosure *blk, HeapRegionClaimer* hr_claimer, uint worker_id);
// Returns the HeapRegion that contains addr. addr must not be NULL.
template <class T>
inline HeapRegion* heap_region_containing(const T addr) const;
// Returns the HeapRegion that contains addr, or NULL if that is an uncommitted
// region. addr must not be NULL.
template <class T>
inline HeapRegion* heap_region_containing_or_null(const T addr) const;
// A CollectedHeap is divided into a dense sequence of "blocks"; that is,
// each address in the (reserved) heap is a member of exactly
// one block. The defining characteristic of a block is that it is
// possible to find its size, and thus to progress forward to the next
// block. (Blocks may be of different sizes.) Thus, blocks may
// represent Java objects, or they might be free blocks in a
// free-list-based heap (or subheap), as long as the two kinds are
// distinguishable and the size of each is determinable.
// Returns the address of the start of the "block" that contains the
// address "addr". We say "blocks" instead of "object" since some heaps
// may not pack objects densely; a chunk may either be an object or a
// non-object.
HeapWord* block_start(const void* addr) const;
// Requires "addr" to be the start of a block, and returns "TRUE" iff
// the block is an object.
bool block_is_obj(const HeapWord* addr) const;
// Section on thread-local allocation buffers (TLABs)
// See CollectedHeap for semantics.
bool supports_tlab_allocation() const;
size_t tlab_capacity(Thread* ignored) const;
size_t tlab_used(Thread* ignored) const;
size_t max_tlab_size() const;
size_t unsafe_max_tlab_alloc(Thread* ignored) const;
inline bool is_in_young(const oop obj);
// Returns "true" iff the given word_size is "very large".
static bool is_humongous(size_t word_size) {
// Note this has to be strictly greater-than as the TLABs
// are capped at the humongous threshold and we want to
// ensure that we don't try to allocate a TLAB as
// humongous and that we don't allocate a humongous
// object in a TLAB.
return word_size > _humongous_object_threshold_in_words;
}
// Returns the humongous threshold for a specific region size
static size_t humongous_threshold_for(size_t region_size) {
return (region_size / 2);
}
// Returns the number of regions the humongous object of the given word size
// requires.
static size_t humongous_obj_size_in_regions(size_t word_size);
// Print the maximum heap capacity.
virtual size_t max_capacity() const;
// Return the size of reserved memory. Returns different value than max_capacity() when AllocateOldGenAt is used.
virtual size_t max_reserved_capacity() const;
virtual jlong millis_since_last_gc();
// Convenience function to be used in situations where the heap type can be
// asserted to be this type.
static G1CollectedHeap* heap();
void set_region_short_lived_locked(HeapRegion* hr);
// add appropriate methods for any other surv rate groups
const G1SurvivorRegions* survivor() const { return &_survivor; }
uint eden_regions_count() const { return _eden.length(); }
uint eden_regions_count(uint node_index) const { return _eden.regions_on_node(node_index); }
uint survivor_regions_count() const { return _survivor.length(); }
uint survivor_regions_count(uint node_index) const { return _survivor.regions_on_node(node_index); }
size_t eden_regions_used_bytes() const { return _eden.used_bytes(); }
size_t survivor_regions_used_bytes() const { return _survivor.used_bytes(); }
uint young_regions_count() const { return _eden.length() + _survivor.length(); }
uint old_regions_count() const { return _old_set.length(); }
uint archive_regions_count() const { return _archive_set.length(); }
uint humongous_regions_count() const { return _humongous_set.length(); }
#ifdef ASSERT
bool check_young_list_empty();
#endif
// *** Stuff related to concurrent marking. It's not clear to me that so
// many of these need to be public.
// The functions below are helper functions that a subclass of
// "CollectedHeap" can use in the implementation of its virtual
// functions.
// This performs a concurrent marking of the live objects in a
// bitmap off to the side.
void do_concurrent_mark();
bool is_marked_next(oop obj) const;
// Determine if an object is dead, given the object and also
// the region to which the object belongs. An object is dead
// iff a) it was not allocated since the last mark, b) it
// is not marked, and c) it is not in an archive region.
bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
return
hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
!hr->is_archive();
}
/**代码未完, 请加载全部代码(NowJava.com).**/