/*
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2019 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// AbstractDisassembler is the base class for
// platform-specific Disassembler classes.
#include "precompiled.hpp"
#include "asm/assembler.inline.hpp"
#include "compiler/abstractDisassembler.hpp"
#include "oops/oop.inline.hpp"
#include "utilities/debug.hpp"
#include "utilities/ostream.hpp"
// Default values for what is being printed as line prefix when disassembling a single instruction.
// Can be overridden by command line parameter PrintAssemblyOptions.
bool AbstractDisassembler::_show_data_hex = true;
bool AbstractDisassembler::_show_data_int = false;
bool AbstractDisassembler::_show_data_float = false;
bool AbstractDisassembler::_align_instr = true;
bool AbstractDisassembler::_show_pc = true;
bool AbstractDisassembler::_show_offset = false;
bool AbstractDisassembler::_show_structs = true;
bool AbstractDisassembler::_show_comment = true;
bool AbstractDisassembler::_show_block_comment = true;
// set "true" to see what's in memory bit by bit
// might prove cumbersome on platforms where instr_len is hard to find out
bool AbstractDisassembler::_show_bytes = false;
// Return #bytes printed. Callers may use that for output alignment.
// Print instruction address, and offset from blob begin.
// Offset width (2, 4, 6, 8 bytes) is adapted to size of blob.
// Working assumption: we are at st->bol() upon entry. If not, it's the
// caller's responsibility to guarantee proper alignment.
int AbstractDisassembler::print_location(address here, address begin, address end, outputStream* st, bool align, bool print_header) {
const int pos_0 = st->position();
if (show_pc() || show_offset()) {
st->print(" ");
}
if (show_pc()) {
if (print_header) {
st->print(" %*s", 18, "Address");
} else {
st->print(" " PTR_FORMAT, p2i(here));
}
}
if (show_offset()) {
#ifdef ASSERT
if ((uintptr_t)begin > (uintptr_t)here) st->print(">>begin(" PTR_FORMAT ") > here(" PTR_FORMAT ")<<", p2i(begin), p2i(here));
if ((uintptr_t)end < (uintptr_t)here) st->print(">> end(" PTR_FORMAT ") < here(" PTR_FORMAT ")<<", p2i(end), p2i(here));
assert((uintptr_t)begin <= (uintptr_t)end, "inverted address range");
#endif
const int blob_len = end - begin;
const int offset = here - begin;
const int width = (blob_len < (1<< 8)) ? 2 : (blob_len < (1<<16)) ? 4 : (blob_len < (1<<24)) ? 6 : 8;
if (print_header) {
st->print(" %*s", width+5, "offset");
} else {
st->print(" (+0x%*.*x)", width, width, offset);
}
}
if ((show_pc() || show_offset()) && !print_header) {
st->print(": ");
}
if (align) {
const uint tabspacing = 8;
const uint pos = st->position();
const uint aligned_pos = ((pos+tabspacing-1)/tabspacing)*tabspacing /* - 1 */;
st->fill_to(aligned_pos);
}
return st->position() - pos_0;
}
// Return #bytes printed. Callers may use that for output alignment.
// Print instruction in hexadecimal representation, using 2-byte blocks.
// Used with real disassemblies. Not so useful with abstract disassemblies.
int AbstractDisassembler::print_instruction(address here, int len, int max_len, outputStream* st, bool align, bool print_header) {
if (show_bytes()) {
const int block_bytes = 2;
const int pos_0 = st->position();
address pos = here;
//---< print instruction bytes in blocks >---
// must print byte by byte: address might be unaligned.
for (; pos <= here + len - block_bytes; pos += block_bytes) {
for (address byte = pos; byte < pos + block_bytes; byte++) {
st->print("%2.2x", *byte);
}
st->print(" ");
}
//---< Print the remaining bytes of the instruction >---
if ((len & (block_bytes - 1)) != 0) {
for (; pos < here + len; pos++) {
st->print("%2.2x", *pos);
}
}
//---< filler for shorter than max_len instructions >---
for (int i = len+1; i < max_len; i++) {
st->print(" ");
}
st->print(" "); // separator space.
print_delimiter(st);
return st->position() - pos_0;
}
if (align) {
const uint tabspacing = 8;
const uint pos = st->position();
const uint aligned_pos = ((pos+tabspacing-1)/tabspacing)*tabspacing /* - 1 */;
st->fill_to(aligned_pos);
}
return 0;
}
// Return #bytes printed. Callers may use that for output alignment.
// Print data (e.g. constant pool entries) in hex format.
// Depending on the alignment, short, int, and long entities are printed.
// If selected, data is formatted as int/long and float/double values in addition.
int AbstractDisassembler::print_hexdata(address here, int len, outputStream* st, bool print_header) {
const int tsize = 8;
const int pos_0 = st->position();
int pos = pos_0;
int align = ((pos+tsize-1)/tsize)*tsize;
st->fill_to(align);
//---< printing hex data >---
if (show_data_hex()) {
switch (len) {
case 1: if (print_header) {
st->print("hex1");
} else {
st->print("0x%02x", *here);
}
st->fill_to(align += tsize);
case 2: if (print_header) {
st->print(" hex2");
} else {
if (((uintptr_t)(here)&0x01) == 0) {
st->print("0x%04x", *((jushort*)here));
}
}
st->fill_to(align += tsize);
case 4: if (print_header) {
st->print(" hex4");
} else {
if (((uintptr_t)(here)&0x03) == 0) {
st->print("0x%08x", *((juint*)here));
}
}
st->fill_to(align += 2*tsize);
case 8: if (print_header) {
st->print(" hex8");
} else {
if (((uintptr_t)(here)&0x07) == 0) {
st->print(PTR_FORMAT, *((uintptr_t*)here));
}
}
st->fill_to(align += 3*tsize);
break;
default: ;
}
pos = st->position();
align = ((pos+tsize-1)/tsize)*tsize;
st->fill_to(align);
}
//---< printing int/long data >---
if (show_data_int()) {
switch (len) {
case 4: if (print_header) {
st->print(" int");
} else {
if (((uintptr_t)(here)&0x03) == 0) {
st->print("%12.1d", *((jint*)here));
}
}
st->fill_to(align += 2*tsize);
case 8: if (print_header) {
st->print(" long");
} else {
if (((uintptr_t)(here)&0x07) == 0) {
st->print(JLONG_FORMAT_W(23), *((jlong*)here));
}
}
st->fill_to(align += 3*tsize);
break;
default: ;
}
pos = st->position();
align = ((pos+tsize-1)/tsize)*tsize;
st->fill_to(align);
}
//---< printing float/double data >---
if (show_data_float()) {
switch (len) {
case 4: if (print_header) {
st->print(" float");
} else {
if (((uintptr_t)(here)&0x03) == 0) {
st->print("%15.7e", (double)*((float*)here));
}
}
st->fill_to(align += 2*tsize);
case 8: if (print_header) {
st->print(" double");
} else {
if (((uintptr_t)(here)&0x07) == 0) {
st->print("%23.15e", *((double*)here));
}
}
st->fill_to(align += 3*tsize);
break;
default: ;
}
}
return st->position() - pos_0;
}
// Return #bytes printed. Callers may use that for output alignment.
// Print an instruction delimiter.
int AbstractDisassembler::print_delimiter(outputStream* st) {
if (align_instr()) { st->print("| "); return 2; }
else return 0;
}
// Decodes the one instruction at address start in a platform-independent format.
// Returns the start of the next instruction (which is 'start' plus 'instruction_size_in_bytes').
// The parameter max_instr_size_in_bytes is used for output alignment purposes only.
address AbstractDisassembler::decode_instruction_abstract(address start,
outputStream* st,
const int instruction_size_in_bytes,
const int max_instr_size_in_bytes) {
assert(instruction_size_in_bytes > 0, "no zero-size instructions!");
assert(max_instr_size_in_bytes >= instruction_size_in_bytes, "inconsistent call parameters");
//---< current instruction is at the start address >---
unsigned char* current = (unsigned char*) start;
int filler_limit = align_instr() ? max_instr_size_in_bytes : ((instruction_size_in_bytes+abstract_instruction_bytes_per_block-1)/abstract_instruction_bytes_per_block)
*abstract_instruction_bytes_per_block;
//---< print the instruction's bytes >---
for (int i = 1; i <= instruction_size_in_bytes; i++) {
st->print("%02x", *current);
++current;
if (abstract_instruction_bytes_per_block <= max_instr_size_in_bytes) {
if (i%abstract_instruction_bytes_per_block == 0) st->print(" ");
} else {
if (i == instruction_size_in_bytes) st->print(" ");
}
}
//---< print some filler spaces to column-align instructions >---
for (int i = instruction_size_in_bytes+1; i <= filler_limit; i++) {
st->print(" ");
if (abstract_instruction_bytes_per_block <= max_instr_size_in_bytes) {
if (i%abstract_instruction_bytes_per_block == 0) st->print(" ");
} else {
if (i == instruction_size_in_bytes) st->print(" ");
}
}
//---< the address of the next instruction >---
return (address) current;
}
// Decodes all instructions in the given range [start..end)
// calling decode_instruction_abstract for each instruction.
// The format is platform dependent only to the extend that
// it respects the actual instruction length where possible.
// Does not print any markers or decorators.
void AbstractDisassembler::decode_range_abstract(address range_start, address range_end,
address start, address end,
outputStream* st,
const int max_instr_size_in_bytes) {
assert(st != NULL, "need an output stream (no default)!");
int idx = 0;
address pos = range_start;
while ((pos != NULL) && (pos < range_end)) {
int instr_size_in_bytes = Assembler::instr_len(pos);
if (idx == 0) print_location(pos, start, end, st, false, false);
else print_delimiter(st);
//---< print the instruction's bytes >---
/**代码未完, 请加载全部代码(NowJava.com).**/