/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "code/codeBehaviours.hpp"
#include "code/codeCache.hpp"
#include "code/compiledIC.hpp"
#include "code/icBuffer.hpp"
#include "code/nmethod.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/linkResolver.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/method.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/symbol.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/icache.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/events.hpp"
// Every time a compiled IC is changed or its type is being accessed,
// either the CompiledIC_lock must be set or we must be at a safe point.
CompiledICLocker::CompiledICLocker(CompiledMethod* method)
: _method(method),
_behaviour(CompiledICProtectionBehaviour::current()),
_locked(_behaviour->lock(_method)) {
}
CompiledICLocker::~CompiledICLocker() {
if (_locked) {
_behaviour->unlock(_method);
}
}
bool CompiledICLocker::is_safe(CompiledMethod* method) {
return CompiledICProtectionBehaviour::current()->is_safe(method);
}
bool CompiledICLocker::is_safe(address code) {
CodeBlob* cb = CodeCache::find_blob_unsafe(code);
assert(cb != NULL && cb->is_compiled(), "must be compiled");
CompiledMethod* cm = cb->as_compiled_method();
return CompiledICProtectionBehaviour::current()->is_safe(cm);
}
//-----------------------------------------------------------------------------
// Low-level access to an inline cache. Private, since they might not be
// MT-safe to use.
void* CompiledIC::cached_value() const {
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
assert (!is_optimized(), "an optimized virtual call does not have a cached metadata");
if (!is_in_transition_state()) {
void* data = get_data();
// If we let the metadata value here be initialized to zero...
assert(data != NULL || Universe::non_oop_word() == NULL,
"no raw nulls in CompiledIC metadatas, because of patching races");
return (data == (void*)Universe::non_oop_word()) ? NULL : data;
} else {
return InlineCacheBuffer::cached_value_for((CompiledIC *)this);
}
}
void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub, void* cache, bool is_icholder) {
assert(entry_point != NULL, "must set legal entry point");
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
assert (!is_optimized() || cache == NULL, "an optimized virtual call does not have a cached metadata");
assert (cache == NULL || cache != (Metadata*)badOopVal, "invalid metadata");
assert(!is_icholder || is_icholder_entry(entry_point), "must be");
// Don't use ic_destination for this test since that forwards
// through ICBuffer instead of returning the actual current state of
// the CompiledIC.
if (is_icholder_entry(_call->destination())) {
// When patching for the ICStub case the cached value isn't
// overwritten until the ICStub copied into the CompiledIC during
// the next safepoint. Make sure that the CompiledICHolder* is
// marked for release at this point since it won't be identifiable
// once the entry point is overwritten.
InlineCacheBuffer::queue_for_release((CompiledICHolder*)get_data());
}
if (TraceCompiledIC) {
tty->print(" ");
print_compiled_ic();
tty->print(" changing destination to " INTPTR_FORMAT, p2i(entry_point));
if (!is_optimized()) {
tty->print(" changing cached %s to " INTPTR_FORMAT, is_icholder ? "icholder" : "metadata", p2i((address)cache));
}
if (is_icstub) {
tty->print(" (icstub)");
}
tty->cr();
}
{
CodeBlob* cb = CodeCache::find_blob_unsafe(_call->instruction_address());
assert(cb != NULL && cb->is_compiled(), "must be compiled");
_call->set_destination_mt_safe(entry_point);
}
if (is_optimized() || is_icstub) {
// Optimized call sites don't have a cache value and ICStub call
// sites only change the entry point. Changing the value in that
// case could lead to MT safety issues.
assert(cache == NULL, "must be null");
return;
}
if (cache == NULL) cache = (void*)Universe::non_oop_word();
set_data((intptr_t)cache);
}
void CompiledIC::set_ic_destination(ICStub* stub) {
internal_set_ic_destination(stub->code_begin(), true, NULL, false);
}
address CompiledIC::ic_destination() const {
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
if (!is_in_transition_state()) {
return _call->destination();
} else {
return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
}
}
bool CompiledIC::is_in_transition_state() const {
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
return InlineCacheBuffer::contains(_call->destination());;
}
bool CompiledIC::is_icholder_call() const {
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
return !_is_optimized && is_icholder_entry(ic_destination());
}
// Returns native address of 'call' instruction in inline-cache. Used by
// the InlineCacheBuffer when it needs to find the stub.
address CompiledIC::stub_address() const {
assert(is_in_transition_state(), "should only be called when we are in a transition state");
return _call->destination();
}
// Clears the IC stub if the compiled IC is in transition state
void CompiledIC::clear_ic_stub() {
if (is_in_transition_state()) {
ICStub* stub = ICStub_from_destination_address(stub_address());
stub->clear();
}
}
//-----------------------------------------------------------------------------
// High-level access to an inline cache. Guaranteed to be MT-safe.
void CompiledIC::initialize_from_iter(RelocIterator* iter) {
assert(iter->addr() == _call->instruction_address(), "must find ic_call");
if (iter->type() == relocInfo::virtual_call_type) {
virtual_call_Relocation* r = iter->virtual_call_reloc();
_is_optimized = false;
_value = _call->get_load_instruction(r);
} else {
assert(iter->type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
_is_optimized = true;
_value = NULL;
}
}
CompiledIC::CompiledIC(CompiledMethod* cm, NativeCall* call)
: _method(cm)
{
_call = _method->call_wrapper_at((address) call);
address ic_call = _call->instruction_address();
assert(ic_call != NULL, "ic_call address must be set");
assert(cm != NULL, "must pass compiled method");
assert(cm->contains(ic_call), "must be in compiled method");
// Search for the ic_call at the given address.
RelocIterator iter(cm, ic_call, ic_call+1);
bool ret = iter.next();
assert(ret == true, "relocInfo must exist at this address");
assert(iter.addr() == ic_call, "must find ic_call");
initialize_from_iter(&iter);
}
CompiledIC::CompiledIC(RelocIterator* iter)
: _method(iter->code())
{
_call = _method->call_wrapper_at(iter->addr());
address ic_call = _call->instruction_address();
CompiledMethod* nm = iter->code();
assert(ic_call != NULL, "ic_call address must be set");
assert(nm != NULL, "must pass compiled method");
assert(nm->contains(ic_call), "must be in compiled method");
initialize_from_iter(iter);
}
// This function may fail for two reasons: either due to running out of vtable
// stubs, or due to running out of IC stubs in an attempted transition to a
// transitional state. The needs_ic_stub_refill value will be set if the failure
// was due to running out of IC stubs, in which case the caller will refill IC
// stubs and retry.
bool CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode,
bool& needs_ic_stub_refill, TRAPS) {
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
address entry;
if (call_info->call_kind() == CallInfo::itable_call) {
assert(bytecode == Bytecodes::_invokeinterface, "");
int itable_index = call_info->itable_index();
entry = VtableStubs::find_itable_stub(itable_index);
if (entry == NULL) {
return false;
}
#ifdef ASSERT
int index = call_info->resolved_method()->itable_index();
assert(index == itable_index, "CallInfo pre-computes this");
InstanceKlass* k = call_info->resolved_method()->method_holder();
assert(k->verify_itable_index(itable_index), "sanity check");
#endif //ASSERT
CompiledICHolder* holder = new CompiledICHolder(call_info->resolved_method()->method_holder(),
call_info->resolved_klass(), false);
holder->claim();
if (!InlineCacheBuffer::create_transition_stub(this, holder, entry)) {
delete holder;
needs_ic_stub_refill = true;
return false;
}
} else {
assert(call_info->call_kind() == CallInfo::vtable_call, "either itable or vtable");
// Can be different than selected_method->vtable_index(), due to package-private etc.
int vtable_index = call_info->vtable_index();
assert(call_info->resolved_klass()->verify_vtable_index(vtable_index), "sanity check");
entry = VtableStubs::find_vtable_stub(vtable_index);
if (entry == NULL) {
return false;
}
if (!InlineCacheBuffer::create_transition_stub(this, NULL, entry)) {
needs_ic_stub_refill = true;
return false;
}
}
if (TraceICs) {
ResourceMark rm;
assert(call_info->selected_method() != NULL, "Unexpected null selected method");
tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
p2i(instruction_address()), call_info->selected_method()->print_value_string(), p2i(entry));
}
// We can't check this anymore. With lazy deopt we could have already
// cleaned this IC entry before we even return. This is possible if
// we ran out of space in the inline cache buffer trying to do the
// set_next and we safepointed to free up space. This is a benign
// race because the IC entry was complete when we safepointed so
// cleaning it immediately is harmless.
// assert(is_megamorphic(), "sanity check");
return true;
}
// true if destination is megamorphic stub
bool CompiledIC::is_megamorphic() const {
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
assert(!is_optimized(), "an optimized call cannot be megamorphic");
// Cannot rely on cached_value. It is either an interface or a method.
return VtableStubs::entry_point(ic_destination()) != NULL;
}
bool CompiledIC::is_call_to_compiled() const {
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
// Use unsafe, since an inline cache might point to a zombie method. However, the zombie
// method is guaranteed to still exist, since we only remove methods after all inline caches
// has been cleaned up
CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
bool is_monomorphic = (cb != NULL && cb->is_compiled());
// Check that the cached_value is a klass for non-optimized monomorphic calls
// This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
// for calling directly to vep without using the inline cache (i.e., cached_value == NULL).
// For JVMCI this occurs because CHA is only used to improve inlining so call sites which could be optimized
// virtuals because there are no currently loaded subclasses of a type are left as virtual call sites.
#ifdef ASSERT
CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
bool is_c1_or_jvmci_method = caller->is_compiled_by_c1() || caller->is_compiled_by_jvmci();
assert( is_c1_or_jvmci_method ||
!is_monomorphic ||
is_optimized() ||
!caller->is_alive() ||
(cached_metadata() != NULL && cached_metadata()->is_klass()), "sanity check");
#endif // ASSERT
return is_monomorphic;
}
bool CompiledIC::is_call_to_interpreted() const {
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
// Call to interpreter if destination is either calling to a stub (if it
// is optimized), or calling to an I2C blob
bool is_call_to_interpreted = false;
if (!is_optimized()) {
// must use unsafe because the destination can be a zombie (and we're cleaning)
// and the print_compiled_ic code wants to know if site (in the non-zombie)
// is to the interpreter.
CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
assert(!is_call_to_interpreted || (is_icholder_call() && cached_icholder() != NULL), "sanity check");
} else {
// Check if we are calling into our own codeblob (i.e., to a stub)
address dest = ic_destination();
#ifdef ASSERT
{
_call->verify_resolve_call(dest);
}
#endif /* ASSERT */
is_call_to_interpreted = _call->is_call_to_interpreted(dest);
}
return is_call_to_interpreted;
}
bool CompiledIC::set_to_clean(bool in_use) {
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
if (TraceInlineCacheClearing || TraceICs) {
tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", p2i(instruction_address()));
print();
}
address entry = _call->get_resolve_call_stub(is_optimized());
// A zombie transition will always be safe, since the metadata has already been set to NULL, so
// we only need to patch the destination
bool safe_transition = _call->is_safe_for_patching() || !in_use || is_optimized() || SafepointSynchronize::is_at_safepoint();
if (safe_transition) {
// Kill any leftover stub we might have too
clear_ic_stub();
if (is_optimized()) {
set_ic_destination(entry);
} else {
set_ic_destination_and_value(entry, (void*)NULL);
}
} else {
// Unsafe transition - create stub.
if (!InlineCacheBuffer::create_transition_stub(this, NULL, entry)) {
return false;
}
}
// We can't check this anymore. With lazy deopt we could have already
// cleaned this IC entry before we even return. This is possible if
// we ran out of space in the inline cache buffer trying to do the
// set_next and we safepointed to free up space. This is a benign
// race because the IC entry was complete when we safepointed so
// cleaning it immediately is harmless.
// assert(is_clean(), "sanity check");
return true;
}
bool CompiledIC::is_clean() const {
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
bool is_clean = false;
address dest = ic_destination();
is_clean = dest == _call->get_resolve_call_stub(is_optimized());
assert(!is_clean || is_optimized() || cached_value() == NULL, "sanity check");
return is_clean;
}
bool CompiledIC::set_to_monomorphic(CompiledICInfo& info) {
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
// Updating a cache to the wrong entry can cause bugs that are very hard
// to track down - if cache entry gets invalid - we just clean it. In
// this way it is always the same code path that is responsible for
// updating and resolving an inline cache
//
// The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
// callsites. In addition ic_miss code will update a site to monomorphic if it determines
// that an monomorphic call to the interpreter can now be monomorphic to compiled code.
//
// In both of these cases the only thing being modifed is the jump/call target and these
// transitions are mt_safe
Thread *thread = Thread::current();
if (info.to_interpreter() || info.to_aot()) {
// Call to interpreter
if (info.is_optimized() && is_optimized()) {
assert(is_clean(), "unsafe IC path");
// the call analysis (callee structure) specifies that the call is optimized
// (either because of CHA or the static target is final)
// At code generation time, this call has been emitted as static call
// Call via stub
assert(info.cached_metadata() != NULL && info.cached_metadata()->is_method(), "sanity check");
methodHandle method (thread, (Method*)info.cached_metadata());
_call->set_to_interpreted(method, info);
if (TraceICs) {
ResourceMark rm(thread);
tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to %s: %s",
p2i(instruction_address()),
(info.to_aot() ? "aot" : "interpreter"),
method->print_value_string());
}
} else {
// Call via method-klass-holder
CompiledICHolder* holder = info.claim_cached_icholder();
if (!InlineCacheBuffer::create_transition_stub(this, holder, info.entry())) {
delete holder;
return false;
}
if (TraceICs) {
ResourceMark rm(thread);
tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via icholder ", p2i(instruction_address()));
}
}
} else {
// Call to compiled code
bool static_bound = info.is_optimized() || (info.cached_metadata() == NULL);
#ifdef ASSERT
CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
assert (cb != NULL && cb->is_compiled(), "must be compiled!");
#endif /* ASSERT */
// This is MT safe if we come from a clean-cache and go through a
// non-verified entry point
bool safe = SafepointSynchronize::is_at_safepoint() ||
(!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
if (!safe) {
if (!InlineCacheBuffer::create_transition_stub(this, info.cached_metadata(), info.entry())) {
return false;
}
} else {
if (is_optimized()) {
set_ic_destination(info.entry());
} else {
set_ic_destination_and_value(info.entry(), info.cached_metadata());
}
}
if (TraceICs) {
ResourceMark rm(thread);
assert(info.cached_metadata() == NULL || info.cached_metadata()->is_klass(), "must be");
tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass = %s) %s",
p2i(instruction_address()),
(info.cached_metadata() != NULL) ? ((Klass*)info.cached_metadata())->print_value_string() : "NULL",
(safe) ? "" : " via stub");
}
}
// We can't check this anymore. With lazy deopt we could have already
// cleaned this IC entry before we even return. This is possible if
// we ran out of space in the inline cache buffer trying to do the
// set_next and we safepointed to free up space. This is a benign
// race because the IC entry was complete when we safepointed so
// cleaning it immediately is harmless.
// assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
return true;
}
// is_optimized: Compiler has generated an optimized call (i.e. fixed, no inline cache)
// static_bound: The call can be static bound. If it isn't also optimized, the property
// wasn't provable at time of compilation. An optimized call will have any necessary
// null check, while a static_bound won't. A static_bound (but not optimized) must
// therefore use the unverified entry point.
void CompiledIC::compute_monomorphic_entry(const methodHandle& method,
Klass* receiver_klass,
bool is_optimized,
bool static_bound,
bool caller_is_nmethod,
CompiledICInfo& info,
TRAPS) {
CompiledMethod* method_code = method->code();
address entry = NULL;
if (method_code != NULL && method_code->is_in_use()) {
assert(method_code->is_compiled(), "must be compiled");
// Call to compiled code
//
// Note: the following problem exists with Compiler1:
// - at compile time we may or may not know if the destination is final
// - if we know that the destination is final (is_optimized), we will emit
// an optimized virtual call (no inline cache), and need a Method* to make
// a call to the interpreter
// - if we don't know if the destination is final, we emit a standard
// virtual call, and use CompiledICHolder to call interpreted code
// (no static call stub has been generated)
// - In the case that we here notice the call is static bound we
// convert the call into what looks to be an optimized virtual call,
// but we must use the unverified entry point (since there will be no
// null check on a call when the target isn't loaded).
// This causes problems when verifying the IC because
// it looks vanilla but is optimized. Code in is_call_to_interpreted
// is aware of this and weakens its asserts.
if (is_optimized) {
entry = method_code->verified_entry_point();
} else {
entry = method_code->entry_point();
}
}
bool far_c2a = entry != NULL && caller_is_nmethod && method_code->is_far_code();
if (entry != NULL && !far_c2a) {
// Call to near compiled code (nmethod or aot).
info.set_compiled_entry(entry, is_optimized ? NULL : receiver_klass, is_optimized);
} else {
if (is_optimized) {
if (far_c2a) {
// Call to aot code from nmethod.
info.set_aot_entry(entry, method());
} else {
// Use stub entry
info.set_interpreter_entry(method()->get_c2i_entry(), method());
}
} else {
// Use icholder entry
assert(method_code == NULL || method_code->is_compiled(), "must be compiled");
CompiledICHolder* holder = new CompiledICHolder(method(), receiver_klass);
info.set_icholder_entry(method()->get_c2i_unverified_entry(), holder);
}
}
assert(info.is_optimized() == is_optimized, "must agree");
}
bool CompiledIC::is_icholder_entry(address entry) {
CodeBlob* cb = CodeCache::find_blob_unsafe(entry);
if (cb != NULL && cb->is_adapter_blob()) {
return true;
}
// itable stubs also use CompiledICHolder
if (cb != NULL && cb->is_vtable_blob()) {
VtableStub* s = VtableStubs::entry_point(entry);
return (s != NULL) && s->is_itable_stub();
}
return false;
}
bool CompiledIC::is_icholder_call_site(virtual_call_Relocation* call_site, const CompiledMethod* cm) {
// This call site might have become stale so inspect it carefully.
address dest = cm->call_wrapper_at(call_site->addr())->destination();
return is_icholder_entry(dest);
}
// ----------------------------------------------------------------------------
bool CompiledStaticCall::set_to_clean(bool in_use) {
// in_use is unused but needed to match template function in CompiledMethod
assert(CompiledICLocker::is_safe(instruction_address()), "mt unsafe call");
// Reset call site
set_destination_mt_safe(resolve_call_stub());
// Do not reset stub here: It is too expensive to call find_stub.
// Instead, rely on caller (nmethod::clear_inline_caches) to clear
// both the call and its stub.
return true;
}
bool CompiledStaticCall::is_clean() const {
return destination() == resolve_call_stub();
}
bool CompiledStaticCall::is_call_to_compiled() const {
return CodeCache::contains(destination());
}
bool CompiledDirectStaticCall::is_call_to_interpreted() const {
// It is a call to interpreted, if it calls to a stub. Hence, the destination
// must be in the stub part of the nmethod that contains the call
CompiledMethod* cm = CodeCache::find_compiled(instruction_address());
return cm->stub_contains(destination());
}
bool CompiledDirectStaticCall::is_call_to_far() const {
// It is a call to aot method, if it calls to a stub. Hence, the destination
// must be in the stub part of the nmethod that contains the call
CodeBlob* desc = CodeCache::find_blob(instruction_address());
return desc->as_compiled_method()->stub_contains(destination());
}
void CompiledStaticCall::set_to_compiled(address entry) {
if (TraceICs) {
ResourceMark rm;
tty->print_cr("%s@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
name(),
p2i(instruction_address()),
p2i(entry));
}
// Call to compiled code
assert(CodeCache::contains(entry), "wrong entry point");
set_destination_mt_safe(entry);
}
void CompiledStaticCall::set(const StaticCallInfo& info) {
assert(CompiledICLocker::is_safe(instruction_address()), "mt unsafe call");
// Updating a cache to the wrong entry can cause bugs that are very hard
// to track down - if cache entry gets invalid - we just clean it. In
// this way it is always the same code path that is responsible for
// updating and resolving an inline cache
assert(is_clean(), "do not update a call entry - use clean");
if (info._to_interpreter) {
// Call to interpreted code
set_to_interpreted(info.callee(), info.entry());
#if INCLUDE_AOT
} else if (info._to_aot) {
// Call to far code
set_to_far(info.callee(), info.entry());
#endif
} else {
set_to_compiled(info.entry());
}
}
// Compute settings for a CompiledStaticCall. Since we might have to set
// the stub when calling to the interpreter, we need to return arguments.
void CompiledStaticCall::compute_entry(const methodHandle& m, bool caller_is_nmethod, StaticCallInfo& info) {
CompiledMethod* m_code = m->code();
info._callee = m;
if (m_code != NULL && m_code->is_in_use()) {
if (caller_is_nmethod && m_code->is_far_code()) {
// Call to far aot code from nmethod.
info._to_aot = true;
} else {
info._to_aot = false;
}
info._to_interpreter = false;
info._entry = m_code->verified_entry_point();
} else {
// Callee is interpreted code. In any case entering the interpreter
// puts a converter-frame on the stack to save arguments.
assert(!m->is_method_handle_intrinsic(), "Compiled code should never call interpreter MH intrinsics");
info._to_interpreter = true;
info._entry = m()->get_c2i_entry();
}
}
address CompiledDirectStaticCall::find_stub_for(address instruction, bool is_aot) {
// Find reloc. information containing this call-site
/**代码未完, 请加载全部代码(NowJava.com).**/