/*
* Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "utilities/globalDefinitions.hpp"
#include "symbolengine.hpp"
#include "utilities/debug.hpp"
#include "utilities/ostream.hpp"
#include "windbghelp.hpp"
#include <windows.h>
#include <imagehlp.h>
#include <psapi.h>
// This code may be invoked normally but also as part of error reporting
// In the latter case, we may run under tight memory constraints (native oom)
// or in a stack overflow situation or the C heap may be corrupted. We may
// run very early before VM initialization or very late when C exit handlers
// run. In all these cases, callstacks would still be nice, so lets be robust.
//
// We need a number of buffers - for the pdb search path, module handle
// lists, for demangled symbols, etc.
//
// These buffers, while typically small, may need to be large for corner
// cases (e.g. templatized C++ symbols, or many DLLs loaded). Where do we
// allocate them?
//
// We may be in error handling for a stack overflow, so lets not put them on
// the stack.
//
// Dynamically allocating them may fail if we are handling a native OOM. It
// is also a bit dangerous, as the C heap may be corrupted already.
//
// That leaves pre-allocating them globally, which is safe and should always
// work (if we synchronize access) but incurs an undesirable footprint for
// non-error cases.
//
// We follow a two-way strategy: Allocate the buffers on the C heap in a
// reasonable large size. Failing that, fall back to static preallocated
// buffers. The size of the latter is large enough to handle common scenarios
// but small enough not to drive up the footprint too much (several kb).
//
// We keep these buffers around once allocated, for subsequent requests. This
// means that by running the initialization early at a safe time - before
// any error happens - buffers can be pre-allocated. This increases the chance
// of useful callstacks in error scenarios in exchange for a some cycles spent
// at startup. This behavior can be controlled with -XX:+InitializeDbgHelpEarly
// and is off by default.
///////
// A simple buffer which attempts to allocate an optimal size but will
// fall back to a static minimally sized array on allocation error.
template <class T, int MINIMAL_CAPACITY, int OPTIMAL_CAPACITY>
class SimpleBufferWithFallback {
T _fallback_buffer[MINIMAL_CAPACITY];
T* _p;
int _capacity;
// A sentinel at the end of the buffer to catch overflows.
void imprint_sentinel() {
assert(_p && _capacity > 0, "Buffer must be allocated");
_p[_capacity - 1] = (T)'X';
_capacity --;
}
public:
SimpleBufferWithFallback<T, MINIMAL_CAPACITY, OPTIMAL_CAPACITY> ()
: _p(NULL), _capacity(0)
{}
// Note: no destructor because these buffers should, once
// allocated, live until process end.
// ~SimpleBufferWithFallback()
// Note: We use raw ::malloc/::free here instead of os::malloc()/os::free
// to prevent circularities or secondary crashes during error reporting.
virtual void initialize () {
assert(_p == NULL && _capacity == 0, "Only call once.");
const size_t bytes = OPTIMAL_CAPACITY * sizeof(T);
T* q = (T*) ::malloc(bytes);
if (q != NULL) {
_p = q;
_capacity = OPTIMAL_CAPACITY;
} else {
_p = _fallback_buffer;
_capacity = (int)(sizeof(_fallback_buffer) / sizeof(T));
}
_p[0] = '\0';
imprint_sentinel();
}
// We need a way to reset the buffer to fallback size for one special
// case, where two buffers need to be of identical capacity.
void reset_to_fallback_capacity() {
if (_p != _fallback_buffer) {
::free(_p);
}
_p = _fallback_buffer;
_capacity = (int)(sizeof(_fallback_buffer) / sizeof(T));
_p[0] = '\0';
imprint_sentinel();
}
T* ptr() { return _p; }
const T* ptr() const { return _p; }
int capacity() const { return _capacity; }
#ifdef ASSERT
void check() const {
assert(_p[_capacity] == (T)'X', "sentinel lost");
}
#else
void check() const {}
#endif
};
////
// ModuleHandleArray: a list holding module handles. Needs to be large enough
// to hold one handle per loaded DLL.
// Note: a standard OpenJDK loads normally ~30 libraries, including system
// libraries, without third party libraries.
typedef SimpleBufferWithFallback <HMODULE, 48, 512> ModuleHandleArrayBase;
class ModuleHandleArray : public ModuleHandleArrayBase {
int _num; // Number of handles in this array (may be < capacity).
public:
void initialize() {
ModuleHandleArrayBase::initialize();
_num = 0;
}
int num() const { return _num; }
void set_num(int n) {
assert(n <= capacity(), "Too large");
_num = n;
}
// Compare with another list; returns true if all handles are equal (incl.
// sort order)
bool equals(const ModuleHandleArray& other) const {
if (_num != other._num) {
return false;
}
if (::memcmp(ptr(), other.ptr(), _num * sizeof(HMODULE)) != 0) {
return false;
}
return true;
}
// Copy content from other list.
void copy_content_from(ModuleHandleArray& other) {
assert(capacity() == other.capacity(), "Different capacities.");
memcpy(ptr(), other.ptr(), other._num * sizeof(HMODULE));
_num = other._num;
}
};
////
// PathBuffer: a buffer to hold and work with a pdb search PATH - a concatenation
// of multiple directories separated by ';'.
// A single directory name can be (NTFS) as long as 32K, but in reality is
// seldom larger than the (historical) MAX_PATH of 260.
#define MINIMUM_PDB_PATH_LENGTH MAX_PATH * 4
#define OPTIMAL_PDB_PATH_LENGTH MAX_PATH * 64
typedef SimpleBufferWithFallback<char, MINIMUM_PDB_PATH_LENGTH, OPTIMAL_PDB_PATH_LENGTH> PathBufferBase;
class PathBuffer: public PathBufferBase {
public:
// Search PDB path for a directory. Search is case insensitive. Returns
// true if directory was found in the path, false otherwise.
bool contains_directory(const char* directory) {
if (ptr() == NULL) {
return false;
}
const size_t len = strlen(directory);
if (len == 0) {
return false;
}
char* p = ptr();
for(;;) {
char* q = strchr(p, ';');
if (q != NULL) {
if (len == (q - p)) {
if (strnicmp(p, directory, len) == 0) {
return true;
}
}
p = q + 1;
} else {
// tail
return stricmp(p, directory) == 0 ? true : false;
}
}
return false;
}
// Appends the given directory to the path. Returns false if internal
// buffer size was not sufficient.
bool append_directory(const char* directory) {
const size_t len = strlen(directory);
if (len == 0) {
return false;
}
char* p = ptr();
const size_t len_now = strlen(p);
const size_t needs_capacity = len_now + 1 + len + 1; // xxx;yy\0
if (needs_capacity > (size_t)capacity()) {
return false; // OOM
}
if (len_now > 0) { // Not the first path element.
p += len_now;
*p = ';';
p ++;
}
strcpy(p, directory);
return true;
}
};
// A simple buffer to hold one single file name. A file name can be (NTFS) as
// long as 32K, but in reality is seldom larger than MAX_PATH.
typedef SimpleBufferWithFallback<char, MAX_PATH, 8 * K> FileNameBuffer;
// A buffer to hold a C++ symbol. Usually small, but symbols may be larger for
// templates.
#define MINIMUM_SYMBOL_NAME_LEN 128
#define OPTIMAL_SYMBOL_NAME_LEN 1024
typedef SimpleBufferWithFallback<uint8_t,
sizeof(IMAGEHLP_SYMBOL64) + MINIMUM_SYMBOL_NAME_LEN,
sizeof(IMAGEHLP_SYMBOL64) + OPTIMAL_SYMBOL_NAME_LEN> SymbolBuffer;
static struct {
// Two buffers to hold lists of loaded modules. handles across invocations of
// SymbolEngine::recalc_search_path().
ModuleHandleArray loaded_modules;
ModuleHandleArray last_loaded_modules;
// Buffer to retrieve and assemble the pdb search path.
PathBuffer search_path;
// Buffer to retrieve directory names for loaded modules.
FileNameBuffer dir_name;
// Buffer to retrieve decoded symbol information (in SymbolEngine::decode)
SymbolBuffer decode_buffer;
void initialize() {
search_path.initialize();
dir_name.initialize();
decode_buffer.initialize();
loaded_modules.initialize();
last_loaded_modules.initialize();
// Note: both module lists must have the same capacity. If one allocation
// did fail, let them both fall back to the fallback size.
if (loaded_modules.capacity() != last_loaded_modules.capacity()) {
loaded_modules.reset_to_fallback_capacity();
last_loaded_modules.reset_to_fallback_capacity();
}
assert(search_path.capacity() > 0 && dir_name.capacity() > 0 &&
decode_buffer.capacity() > 0 && loaded_modules.capacity() > 0 &&
last_loaded_modules.capacity() > 0, "Init error.");
}
} g_buffers;
// Scan the loaded modules.
//
// For each loaded module, add the directory it is located in to the pdb search
// path, but avoid duplicates. Prior search path content is preserved.
//
// If p_search_path_was_updated is not NULL, points to a bool which, upon
// successful return from the function, contains true if the search path
// was updated, false if no update was needed because no new DLLs were
// loaded or unloaded.
//
// Returns true for success, false for error.
static bool recalc_search_path_locked(bool* p_search_path_was_updated) {
if (p_search_path_was_updated) {
*p_search_path_was_updated = false;
}
HANDLE hProcess = ::GetCurrentProcess();
BOOL success = false;
// 1) Retrieve current set search path.
// (PDB search path is a global setting and someone might have modified
// it, so take care not to remove directories, just to add our own).
if (!WindowsDbgHelp::symGetSearchPath(hProcess, g_buffers.search_path.ptr(),
(int)g_buffers.search_path.capacity())) {
return false;
}
DEBUG_ONLY(g_buffers.search_path.check();)
// 2) Retrieve list of modules handles of all currently loaded modules.
DWORD bytes_needed = 0;
const DWORD buffer_capacity_bytes = (DWORD)g_buffers.loaded_modules.capacity() * sizeof(HMODULE);
success = ::EnumProcessModules(hProcess, g_buffers.loaded_modules.ptr(),
buffer_capacity_bytes, &bytes_needed);
DEBUG_ONLY(g_buffers.loaded_modules.check();)
// Note: EnumProcessModules is sloppily defined in terms of whether a
// too-small output buffer counts as error. Will it truncate but still
// return TRUE? Nobody knows and the manpage is not telling. So we count
// truncation it as error, disregarding the return value.
if (!success || bytes_needed > buffer_capacity_bytes) {
return false;
} else {
const int num_modules = bytes_needed / sizeof(HMODULE);
g_buffers.loaded_modules.set_num(num_modules);
}
// Compare the list of module handles with the last list. If the lists are
// identical, no additional dlls were loaded and we can stop.
if (g_buffers.loaded_modules.equals(g_buffers.last_loaded_modules)) {
return true;
} else {
// Remember the new set of module handles and continue.
g_buffers.last_loaded_modules.copy_content_from(g_buffers.loaded_modules);
}
// 3) For each loaded module: retrieve directory from which it was loaded.
// Add directory to search path (but avoid duplicates).
bool did_modify_searchpath = false;
for (int i = 0; i < (int)g_buffers.loaded_modules.num(); i ++) {
const HMODULE hMod = g_buffers.loaded_modules.ptr()[i];
char* const filebuffer = g_buffers.dir_name.ptr();
const int file_buffer_capacity = g_buffers.dir_name.capacity();
const int len_returned = (int)::GetModuleFileName(hMod, filebuffer, (DWORD)file_buffer_capacity);
DEBUG_ONLY(g_buffers.dir_name.check();)
if (len_returned == 0) {
// This may happen when a module gets unloaded after our call to EnumProcessModules.
// It should be rare but may sporadically happen. Just ignore and continue with the
// next module.
continue;
} else if (len_returned == file_buffer_capacity) {
// Truncation. Just skip this module and continue with the next module.
continue;
}
// Cut file name part off.
char* last_slash = ::strrchr(filebuffer, '\\');
if (last_slash == NULL) {
last_slash = ::strrchr(filebuffer, '/');
}
if (last_slash) {
*last_slash = '\0';
}
// If this is already part of the search path, ignore it, otherwise
// append to search path.
if (!g_buffers.search_path.contains_directory(filebuffer)) {
if (!g_buffers.search_path.append_directory(filebuffer)) {
return false; // oom
}
DEBUG_ONLY(g_buffers.search_path.check();)
did_modify_searchpath = true;
}
} // for each loaded module.
// If we did not modify the search path, nothing further needs to be done.
if (!did_modify_searchpath) {
return true;
}
// Set the search path to its new value.
if (!WindowsDbgHelp::symSetSearchPath(hProcess, g_buffers.search_path.ptr())) {
return false;
}
if (p_search_path_was_updated) {
*p_search_path_was_updated = true;
}
return true;
}
static bool demangle_locked(const char* symbol, char *buf, int buflen) {
return WindowsDbgHelp::unDecorateSymbolName(symbol, buf, buflen, UNDNAME_COMPLETE) > 0;
}
static bool decode_locked(const void* addr, char* buf, int buflen, int* offset, bool do_demangle) {
assert(g_buffers.decode_buffer.capacity() >= (sizeof(IMAGEHLP_SYMBOL64) + MINIMUM_SYMBOL_NAME_LEN),
"Decode buffer too small.");
assert(buf != NULL && buflen > 0 && offset != NULL, "invalid output buffer.");
DWORD64 displacement;
PIMAGEHLP_SYMBOL64 pSymbol = NULL;
bool success = false;
pSymbol = (PIMAGEHLP_SYMBOL64) g_buffers.decode_buffer.ptr();
pSymbol->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
pSymbol->MaxNameLength = (DWORD)(g_buffers.decode_buffer.capacity() - sizeof(IMAGEHLP_SYMBOL64) - 1);
// It is unclear how SymGetSymFromAddr64 handles truncation. Experiments
// show it will return TRUE but not zero terminate (which is a really bad
// combination). Lets be super careful.
::memset(pSymbol->Name, 0, pSymbol->MaxNameLength); // To catch truncation.
if (WindowsDbgHelp::symGetSymFromAddr64(::GetCurrentProcess(), (DWORD64)addr, &displacement, pSymbol)) {
success = true;
if (pSymbol->Name[pSymbol->MaxNameLength - 1] != '\0') {
// Symbol was truncated. Do not attempt to demangle. Instead, zero terminate the
// truncated string. We still return success - the truncated string may still
// be usable for the caller.
pSymbol->Name[pSymbol->MaxNameLength - 1] = '\0';
do_demangle = false;
}
// Attempt to demangle.
if (do_demangle && demangle_locked(pSymbol->Name, buf, buflen)) {
// ok.
} else {
::strncpy(buf, pSymbol->Name, buflen - 1);
}
buf[buflen - 1] = '\0';
*offset = (int)displacement;
}
DEBUG_ONLY(g_buffers.decode_buffer.check();)
return success;
}
static enum {
state_uninitialized = 0,
state_ready = 1,
state_error = 2
} g_state = state_uninitialized;
static void initialize() {
assert(g_state == state_uninitialized, "wrong sequence");
g_state = state_error;
// 1) Initialize buffers.
g_buffers.initialize();
// 1) Call SymInitialize
HANDLE hProcess = ::GetCurrentProcess();
WindowsDbgHelp::symSetOptions(SYMOPT_FAIL_CRITICAL_ERRORS | SYMOPT_DEFERRED_LOADS |
SYMOPT_EXACT_SYMBOLS | SYMOPT_LOAD_LINES);
if (!WindowsDbgHelp::symInitialize(hProcess, NULL, TRUE)) {
return;
}
// Note: we ignore any errors from this point on. The symbol engine may be
// usable enough.
g_state = state_ready;
(void)recalc_search_path_locked(NULL);
}
///////////////////// External functions //////////////////////////
// All outside facing functions are synchronized. Also, we run
// initialization on first touch.
static CRITICAL_SECTION g_cs;
namespace { // Do not export.
class SymbolEngineEntry {
public:
SymbolEngineEntry() {
::EnterCriticalSection(&g_cs);
if (g_state == state_uninitialized) {
initialize();
}
}
~SymbolEngineEntry() {
::LeaveCriticalSection(&g_cs);
}
};
}
// Called at DLL_PROCESS_ATTACH.
void SymbolEngine::pre_initialize() {
::InitializeCriticalSection(&g_cs);
}
bool SymbolEngine::decode(const void* addr, char* buf, int buflen, int* offset, bool do_demangle) {
assert(buf != NULL && buflen > 0 && offset != NULL, "Argument error");
buf[0] = '\0';
*offset = -1;
if (addr == NULL) {
return false;
}
SymbolEngineEntry entry_guard;
// Try decoding the symbol once. If we fail, attempt to rebuild the
// symbol search path - maybe the pc points to a dll whose pdb file is
// outside our search path. Then do attempt the decode again.
bool success = decode_locked(addr, buf, buflen, offset, do_demangle);
if (!success) {
bool did_update_search_path = false;
if (recalc_search_path_locked(&did_update_search_path)) {
if (did_update_search_path) {
success = decode_locked(addr, buf, buflen, offset, do_demangle);
}
}
}
return success;
}
bool SymbolEngine::demangle(const char* symbol, char *buf, int buflen) {
SymbolEngineEntry entry_guard;
return demangle_locked(symbol, buf, buflen);
}
/**代码未完, 请加载全部代码(NowJava.com).**/