JDK14/Java14源码在线阅读

/*
 * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2012, 2019 SAP SE. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

// According to the AIX OS doc #pragma alloca must be used
// with C++ compiler before referencing the function alloca()
#pragma alloca

// no precompiled headers
#include "jvm.h"
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "compiler/compileBroker.hpp"
#include "interpreter/interpreter.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "libo4.hpp"
#include "libperfstat_aix.hpp"
#include "libodm_aix.hpp"
#include "loadlib_aix.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/filemap.hpp"
#include "misc_aix.hpp"
#include "oops/oop.inline.hpp"
#include "os_aix.inline.hpp"
#include "os_share_aix.hpp"
#include "porting_aix.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/globals.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/osThread.hpp"
#include "runtime/perfMemory.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/statSampler.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadCritical.hpp"
#include "runtime/timer.hpp"
#include "runtime/vm_version.hpp"
#include "services/attachListener.hpp"
#include "services/runtimeService.hpp"
#include "utilities/align.hpp"
#include "utilities/decoder.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/events.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/vmError.hpp"

// put OS-includes here (sorted alphabetically)
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <poll.h>
#include <procinfo.h>
#include <pthread.h>
#include <pwd.h>
#include <semaphore.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/ipc.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/select.h>
#include <sys/shm.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <sys/systemcfg.h>
#include <sys/time.h>
#include <sys/times.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <sys/vminfo.h>
#include <sys/wait.h>

// Missing prototypes for various system APIs.
extern "C"
int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);

#if !defined(_AIXVERSION_610)
extern "C" int getthrds64(pid_t, struct thrdentry64*, int, tid64_t*, int);
extern "C" int getprocs64(procentry64*, int, fdsinfo*, int, pid_t*, int);
extern "C" int getargs(procsinfo*, int, char*, int);
#endif

#define MAX_PATH (2 * K)

// for timer info max values which include all bits
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
// for multipage initialization error analysis (in 'g_multipage_error')
#define ERROR_MP_OS_TOO_OLD                          100
#define ERROR_MP_EXTSHM_ACTIVE                       101
#define ERROR_MP_VMGETINFO_FAILED                    102
#define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103

// excerpts from systemcfg.h that might be missing on older os levels
#ifndef PV_7
  #define PV_7 0x200000          /* Power PC 7 */
#endif
#ifndef PV_7_Compat
  #define PV_7_Compat 0x208000   /* Power PC 7 */
#endif
#ifndef PV_8
  #define PV_8 0x300000          /* Power PC 8 */
#endif
#ifndef PV_8_Compat
  #define PV_8_Compat 0x308000   /* Power PC 8 */
#endif
#ifndef PV_9
  #define PV_9 0x400000          /* Power PC 9 */
#endif
#ifndef PV_9_Compat
  #define PV_9_Compat  0x408000  /* Power PC 9 */
#endif


static address resolve_function_descriptor_to_code_pointer(address p);

static void vmembk_print_on(outputStream* os);

////////////////////////////////////////////////////////////////////////////////
// global variables (for a description see os_aix.hpp)

julong    os::Aix::_physical_memory = 0;

pthread_t os::Aix::_main_thread = ((pthread_t)0);
int       os::Aix::_page_size = -1;

// -1 = uninitialized, 0 if AIX, 1 if OS/400 pase
int       os::Aix::_on_pase = -1;

// 0 = uninitialized, otherwise 32 bit number:
//  0xVVRRTTSS
//  VV - major version
//  RR - minor version
//  TT - tech level, if known, 0 otherwise
//  SS - service pack, if known, 0 otherwise
uint32_t  os::Aix::_os_version = 0;

// -1 = uninitialized, 0 - no, 1 - yes
int       os::Aix::_xpg_sus_mode = -1;

// -1 = uninitialized, 0 - no, 1 - yes
int       os::Aix::_extshm = -1;

////////////////////////////////////////////////////////////////////////////////
// local variables

static volatile jlong max_real_time = 0;
static jlong    initial_time_count = 0;
static int      clock_tics_per_sec = 100;
static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
static bool     check_signals      = true;
static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
static sigset_t SR_sigset;

// Process break recorded at startup.
static address g_brk_at_startup = NULL;

// This describes the state of multipage support of the underlying
// OS. Note that this is of no interest to the outsize world and
// therefore should not be defined in AIX class.
//
// AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
// latter two (16M "large" resp. 16G "huge" pages) require special
// setup and are normally not available.
//
// AIX supports multiple page sizes per process, for:
//  - Stack (of the primordial thread, so not relevant for us)
//  - Data - data, bss, heap, for us also pthread stacks
//  - Text - text code
//  - shared memory
//
// Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
// and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
//
// For shared memory, page size can be set dynamically via
// shmctl(). Different shared memory regions can have different page
// sizes.
//
// More information can be found at AIBM info center:
//   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
//
static struct {
  size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
  size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
  size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
  size_t pthr_stack_pagesize; // stack page size of pthread threads
  size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
  bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
  bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
  int error;                  // Error describing if something went wrong at multipage init.
} g_multipage_support = {
  (size_t) -1,
  (size_t) -1,
  (size_t) -1,
  (size_t) -1,
  (size_t) -1,
  false, false,
  0
};

// We must not accidentally allocate memory close to the BRK - even if
// that would work - because then we prevent the BRK segment from
// growing which may result in a malloc OOM even though there is
// enough memory. The problem only arises if we shmat() or mmap() at
// a specific wish address, e.g. to place the heap in a
// compressed-oops-friendly way.
static bool is_close_to_brk(address a) {
  assert0(g_brk_at_startup != NULL);
  if (a >= g_brk_at_startup &&
      a < (g_brk_at_startup + MaxExpectedDataSegmentSize)) {
    return true;
  }
  return false;
}

julong os::available_memory() {
  return Aix::available_memory();
}

julong os::Aix::available_memory() {
  // Avoid expensive API call here, as returned value will always be null.
  if (os::Aix::on_pase()) {
    return 0x0LL;
  }
  os::Aix::meminfo_t mi;
  if (os::Aix::get_meminfo(&mi)) {
    return mi.real_free;
  } else {
    return ULONG_MAX;
  }
}

julong os::physical_memory() {
  return Aix::physical_memory();
}

// Return true if user is running as root.

bool os::have_special_privileges() {
  static bool init = false;
  static bool privileges = false;
  if (!init) {
    privileges = (getuid() != geteuid()) || (getgid() != getegid());
    init = true;
  }
  return privileges;
}

// Helper function, emulates disclaim64 using multiple 32bit disclaims
// because we cannot use disclaim64() on AS/400 and old AIX releases.
static bool my_disclaim64(char* addr, size_t size) {

  if (size == 0) {
    return true;
  }

  // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
  const unsigned int maxDisclaimSize = 0x40000000;

  const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
  const unsigned int lastDisclaimSize = (size % maxDisclaimSize);

  char* p = addr;

  for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
    if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
      trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
      return false;
    }
    p += maxDisclaimSize;
  }

  if (lastDisclaimSize > 0) {
    if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
      trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
      return false;
    }
  }

  return true;
}

// Cpu architecture string
#if defined(PPC32)
static char cpu_arch[] = "ppc";
#elif defined(PPC64)
static char cpu_arch[] = "ppc64";
#else
#error Add appropriate cpu_arch setting
#endif

// Wrap the function "vmgetinfo" which is not available on older OS releases.
static int checked_vmgetinfo(void *out, int command, int arg) {
  if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
    guarantee(false, "cannot call vmgetinfo on AS/400 older than V6R1");
  }
  return ::vmgetinfo(out, command, arg);
}

// Given an address, returns the size of the page backing that address.
size_t os::Aix::query_pagesize(void* addr) {

  if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
    // AS/400 older than V6R1: no vmgetinfo here, default to 4K
    return 4*K;
  }

  vm_page_info pi;
  pi.addr = (uint64_t)addr;
  if (checked_vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
    return pi.pagesize;
  } else {
    assert(false, "vmgetinfo failed to retrieve page size");
    return 4*K;
  }
}

void os::Aix::initialize_system_info() {

  // Get the number of online(logical) cpus instead of configured.
  os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
  assert(_processor_count > 0, "_processor_count must be > 0");

  // Retrieve total physical storage.
  os::Aix::meminfo_t mi;
  if (!os::Aix::get_meminfo(&mi)) {
    assert(false, "os::Aix::get_meminfo failed.");
  }
  _physical_memory = (julong) mi.real_total;
}

// Helper function for tracing page sizes.
static const char* describe_pagesize(size_t pagesize) {
  switch (pagesize) {
    case 4*K : return "4K";
    case 64*K: return "64K";
    case 16*M: return "16M";
    case 16*G: return "16G";
    default:
      assert(false, "surprise");
      return "??";
  }
}

// Probe OS for multipage support.
// Will fill the global g_multipage_support structure.
// Must be called before calling os::large_page_init().
static void query_multipage_support() {

  guarantee(g_multipage_support.pagesize == -1,
            "do not call twice");

  g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);

  // This really would surprise me.
  assert(g_multipage_support.pagesize == 4*K, "surprise!");

  // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
  // Default data page size is defined either by linker options (-bdatapsize)
  // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
  // default should be 4K.
  {
    void* p = ::malloc(16*M);
    g_multipage_support.datapsize = os::Aix::query_pagesize(p);
    ::free(p);
  }

  // Query default shm page size (LDR_CNTRL SHMPSIZE).
  // Note that this is pure curiosity. We do not rely on default page size but set
  // our own page size after allocated.
  {
    const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
    guarantee(shmid != -1, "shmget failed");
    void* p = ::shmat(shmid, NULL, 0);
    ::shmctl(shmid, IPC_RMID, NULL);
    guarantee(p != (void*) -1, "shmat failed");
    g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
    ::shmdt(p);
  }

  // Before querying the stack page size, make sure we are not running as primordial
  // thread (because primordial thread's stack may have different page size than
  // pthread thread stacks). Running a VM on the primordial thread won't work for a
  // number of reasons so we may just as well guarantee it here.
  guarantee0(!os::is_primordial_thread());

  // Query pthread stack page size. Should be the same as data page size because
  // pthread stacks are allocated from C-Heap.
  {
    int dummy = 0;
    g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
  }

  // Query default text page size (LDR_CNTRL TEXTPSIZE).
  {
    address any_function =
      resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
    g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
  }

  // Now probe for support of 64K pages and 16M pages.

  // Before OS/400 V6R1, there is no support for pages other than 4K.
  if (os::Aix::on_pase_V5R4_or_older()) {
    trcVerbose("OS/400 < V6R1 - no large page support.");
    g_multipage_support.error = ERROR_MP_OS_TOO_OLD;
    goto query_multipage_support_end;
  }

  // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
  {
    const int MAX_PAGE_SIZES = 4;
    psize_t sizes[MAX_PAGE_SIZES];
    const int num_psizes = checked_vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
    if (num_psizes == -1) {
      trcVerbose("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)", errno);
      trcVerbose("disabling multipage support.");
      g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
      goto query_multipage_support_end;
    }
    guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
    assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
    trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
    for (int i = 0; i < num_psizes; i ++) {
      trcVerbose(" %s ", describe_pagesize(sizes[i]));
    }

    // Can we use 64K, 16M pages?
    for (int i = 0; i < num_psizes; i ++) {
      const size_t pagesize = sizes[i];
      if (pagesize != 64*K && pagesize != 16*M) {
        continue;
      }
      bool can_use = false;
      trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
      const int shmid = ::shmget(IPC_PRIVATE, pagesize,
        IPC_CREAT | S_IRUSR | S_IWUSR);
      guarantee0(shmid != -1); // Should always work.
      // Try to set pagesize.
      struct shmid_ds shm_buf = { 0 };
      shm_buf.shm_pagesize = pagesize;
      if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
        const int en = errno;
        ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
        trcVerbose("shmctl(SHM_PAGESIZE) failed with errno=%d", errno);
      } else {
        // Attach and double check pageisze.
        void* p = ::shmat(shmid, NULL, 0);
        ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
        guarantee0(p != (void*) -1); // Should always work.
        const size_t real_pagesize = os::Aix::query_pagesize(p);
        if (real_pagesize != pagesize) {
          trcVerbose("real page size (" SIZE_FORMAT_HEX ") differs.", real_pagesize);
        } else {
          can_use = true;
        }
        ::shmdt(p);
      }
      trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
      if (pagesize == 64*K) {
        g_multipage_support.can_use_64K_pages = can_use;
      } else if (pagesize == 16*M) {
        g_multipage_support.can_use_16M_pages = can_use;
      }
    }

  } // end: check which pages can be used for shared memory

query_multipage_support_end:

  trcVerbose("base page size (sysconf _SC_PAGESIZE): %s",
      describe_pagesize(g_multipage_support.pagesize));
  trcVerbose("Data page size (C-Heap, bss, etc): %s",
      describe_pagesize(g_multipage_support.datapsize));
  trcVerbose("Text page size: %s",
      describe_pagesize(g_multipage_support.textpsize));
  trcVerbose("Thread stack page size (pthread): %s",
      describe_pagesize(g_multipage_support.pthr_stack_pagesize));
  trcVerbose("Default shared memory page size: %s",
      describe_pagesize(g_multipage_support.shmpsize));
  trcVerbose("Can use 64K pages dynamically with shared memory: %s",
      (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
  trcVerbose("Can use 16M pages dynamically with shared memory: %s",
      (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
  trcVerbose("Multipage error details: %d",
      g_multipage_support.error);

  // sanity checks
  assert0(g_multipage_support.pagesize == 4*K);
  assert0(g_multipage_support.datapsize == 4*K || g_multipage_support.datapsize == 64*K);
  assert0(g_multipage_support.textpsize == 4*K || g_multipage_support.textpsize == 64*K);
  assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
  assert0(g_multipage_support.shmpsize == 4*K || g_multipage_support.shmpsize == 64*K);

}

void os::init_system_properties_values() {

#ifndef OVERRIDE_LIBPATH
  #define DEFAULT_LIBPATH "/lib:/usr/lib"
#else
  #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
#endif
#define EXTENSIONS_DIR  "/lib/ext"

  // Buffer that fits several sprintfs.
  // Note that the space for the trailing null is provided
  // by the nulls included by the sizeof operator.
  const size_t bufsize =
    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
  char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);

  // sysclasspath, java_home, dll_dir
  {
    char *pslash;
    os::jvm_path(buf, bufsize);

    // Found the full path to libjvm.so.
    // Now cut the path to <java_home>/jre if we can.
    pslash = strrchr(buf, '/');
    if (pslash != NULL) {
      *pslash = '\0';            // Get rid of /libjvm.so.
    }
    pslash = strrchr(buf, '/');
    if (pslash != NULL) {
      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
    }
    Arguments::set_dll_dir(buf);

    if (pslash != NULL) {
      pslash = strrchr(buf, '/');
      if (pslash != NULL) {
        *pslash = '\0';        // Get rid of /lib.
      }
    }
    Arguments::set_java_home(buf);
    if (!set_boot_path('/', ':')) {
      vm_exit_during_initialization("Failed setting boot class path.", NULL);
    }
  }

  // Where to look for native libraries.

  // On Aix we get the user setting of LIBPATH.
  // Eventually, all the library path setting will be done here.
  // Get the user setting of LIBPATH.
  const char *v = ::getenv("LIBPATH");
  const char *v_colon = ":";
  if (v == NULL) { v = ""; v_colon = ""; }

  // Concatenate user and invariant part of ld_library_path.
  // That's +1 for the colon and +1 for the trailing '\0'.
  char *ld_library_path = NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
  sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
  Arguments::set_library_path(ld_library_path);
  FREE_C_HEAP_ARRAY(char, ld_library_path);

  // Extensions directories.
  sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
  Arguments::set_ext_dirs(buf);

  FREE_C_HEAP_ARRAY(char, buf);

#undef DEFAULT_LIBPATH
#undef EXTENSIONS_DIR
}

////////////////////////////////////////////////////////////////////////////////
// breakpoint support

void os::breakpoint() {
  BREAKPOINT;
}

extern "C" void breakpoint() {
  // use debugger to set breakpoint here
}

////////////////////////////////////////////////////////////////////////////////
// signal support

debug_only(static bool signal_sets_initialized = false);
static sigset_t unblocked_sigs, vm_sigs;

void os::Aix::signal_sets_init() {
  // Should also have an assertion stating we are still single-threaded.
  assert(!signal_sets_initialized, "Already initialized");
  // Fill in signals that are necessarily unblocked for all threads in
  // the VM. Currently, we unblock the following signals:
  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
  //                         by -Xrs (=ReduceSignalUsage));
  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
  // the dispositions or masks wrt these signals.
  // Programs embedding the VM that want to use the above signals for their
  // own purposes must, at this time, use the "-Xrs" option to prevent
  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
  // (See bug 4345157, and other related bugs).
  // In reality, though, unblocking these signals is really a nop, since
  // these signals are not blocked by default.
  sigemptyset(&unblocked_sigs);
  sigaddset(&unblocked_sigs, SIGILL);
  sigaddset(&unblocked_sigs, SIGSEGV);
  sigaddset(&unblocked_sigs, SIGBUS);
  sigaddset(&unblocked_sigs, SIGFPE);
  sigaddset(&unblocked_sigs, SIGTRAP);
  sigaddset(&unblocked_sigs, SR_signum);

  if (!ReduceSignalUsage) {
   if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
     sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   }
   if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
     sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   }
   if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
     sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   }
  }
  // Fill in signals that are blocked by all but the VM thread.
  sigemptyset(&vm_sigs);
  if (!ReduceSignalUsage)
    sigaddset(&vm_sigs, BREAK_SIGNAL);
  debug_only(signal_sets_initialized = true);
}

// These are signals that are unblocked while a thread is running Java.
// (For some reason, they get blocked by default.)
sigset_t* os::Aix::unblocked_signals() {
  assert(signal_sets_initialized, "Not initialized");
  return &unblocked_sigs;
}

// These are the signals that are blocked while a (non-VM) thread is
// running Java. Only the VM thread handles these signals.
sigset_t* os::Aix::vm_signals() {
  assert(signal_sets_initialized, "Not initialized");
  return &vm_sigs;
}

void os::Aix::hotspot_sigmask(Thread* thread) {

  //Save caller's signal mask before setting VM signal mask
  sigset_t caller_sigmask;
  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);

  OSThread* osthread = thread->osthread();
  osthread->set_caller_sigmask(caller_sigmask);

  pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);

  if (!ReduceSignalUsage) {
    if (thread->is_VM_thread()) {
      // Only the VM thread handles BREAK_SIGNAL ...
      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
    } else {
      // ... all other threads block BREAK_SIGNAL
      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
    }
  }
}

// retrieve memory information.
// Returns false if something went wrong;
// content of pmi undefined in this case.
bool os::Aix::get_meminfo(meminfo_t* pmi) {

  assert(pmi, "get_meminfo: invalid parameter");

  memset(pmi, 0, sizeof(meminfo_t));

  if (os::Aix::on_pase()) {
    // On PASE, use the libo4 porting library.

    unsigned long long virt_total = 0;
    unsigned long long real_total = 0;
    unsigned long long real_free = 0;
    unsigned long long pgsp_total = 0;
    unsigned long long pgsp_free = 0;
    if (libo4::get_memory_info(&virt_total, &real_total, &real_free, &pgsp_total, &pgsp_free)) {
      pmi->virt_total = virt_total;
      pmi->real_total = real_total;
      pmi->real_free = real_free;
      pmi->pgsp_total = pgsp_total;
      pmi->pgsp_free = pgsp_free;
      return true;
    }
    return false;

  } else {

    // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
    // See:
    // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
    //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
    // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
    //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm

    perfstat_memory_total_t psmt;
    memset (&psmt, '\0', sizeof(psmt));
    const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
    if (rc == -1) {
      trcVerbose("perfstat_memory_total() failed (errno=%d)", errno);
      assert(0, "perfstat_memory_total() failed");
      return false;
    }

    assert(rc == 1, "perfstat_memory_total() - weird return code");

    // excerpt from
    // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
    //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
    // The fields of perfstat_memory_total_t:
    // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
    // u_longlong_t real_total         Total real memory (in 4 KB pages).
    // u_longlong_t real_free          Free real memory (in 4 KB pages).
    // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
    // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).

    pmi->virt_total = psmt.virt_total * 4096;
    pmi->real_total = psmt.real_total * 4096;
    pmi->real_free = psmt.real_free * 4096;
    pmi->pgsp_total = psmt.pgsp_total * 4096;
    pmi->pgsp_free = psmt.pgsp_free * 4096;

    return true;

  }
} // end os::Aix::get_meminfo

//////////////////////////////////////////////////////////////////////////////
// create new thread

// Thread start routine for all newly created threads
static void *thread_native_entry(Thread *thread) {

  thread->record_stack_base_and_size();

  const pthread_t pthread_id = ::pthread_self();
  const tid_t kernel_thread_id = ::thread_self();

  LogTarget(Info, os, thread) lt;
  if (lt.is_enabled()) {
    address low_address = thread->stack_end();
    address high_address = thread->stack_base();
    lt.print("Thread is alive (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT
             ", stack [" PTR_FORMAT " - " PTR_FORMAT " (" SIZE_FORMAT "k using %uk pages)).",
             os::current_thread_id(), (uintx) kernel_thread_id, low_address, high_address,
             (high_address - low_address) / K, os::Aix::query_pagesize(low_address) / K);
  }

  // Normally, pthread stacks on AIX live in the data segment (are allocated with malloc()
  // by the pthread library). In rare cases, this may not be the case, e.g. when third-party
  // tools hook pthread_create(). In this case, we may run into problems establishing
  // guard pages on those stacks, because the stacks may reside in memory which is not
  // protectable (shmated).
  if (thread->stack_base() > ::sbrk(0)) {
    log_warning(os, thread)("Thread stack not in data segment.");
  }

  // Try to randomize the cache line index of hot stack frames.
  // This helps when threads of the same stack traces evict each other's
  // cache lines. The threads can be either from the same JVM instance, or
  // from different JVM instances. The benefit is especially true for
  // processors with hyperthreading technology.

  static int counter = 0;
  int pid = os::current_process_id();
  alloca(((pid ^ counter++) & 7) * 128);

  thread->initialize_thread_current();

  OSThread* osthread = thread->osthread();

  // Thread_id is pthread id.
  osthread->set_thread_id(pthread_id);

  // .. but keep kernel thread id too for diagnostics
  osthread->set_kernel_thread_id(kernel_thread_id);

  // Initialize signal mask for this thread.
  os::Aix::hotspot_sigmask(thread);

  // Initialize floating point control register.
  os::Aix::init_thread_fpu_state();

  assert(osthread->get_state() == RUNNABLE, "invalid os thread state");

  // Call one more level start routine.
  thread->call_run();

  // Note: at this point the thread object may already have deleted itself.
  // Prevent dereferencing it from here on out.
  thread = NULL;

  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
    os::current_thread_id(), (uintx) kernel_thread_id);

  return 0;
}

bool os::create_thread(Thread* thread, ThreadType thr_type,
                       size_t req_stack_size) {

  assert(thread->osthread() == NULL, "caller responsible");

  // Allocate the OSThread object.
  OSThread* osthread = new OSThread(NULL, NULL);
  if (osthread == NULL) {
    return false;
  }

  // Set the correct thread state.
  osthread->set_thread_type(thr_type);

  // Initial state is ALLOCATED but not INITIALIZED
  osthread->set_state(ALLOCATED);

  thread->set_osthread(osthread);

  // Init thread attributes.
  pthread_attr_t attr;
  pthread_attr_init(&attr);
  guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");

  // Make sure we run in 1:1 kernel-user-thread mode.
  if (os::Aix::on_aix()) {
    guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
    guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
  }

  // Start in suspended state, and in os::thread_start, wake the thread up.
  guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");

  // Calculate stack size if it's not specified by caller.
  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);

  // JDK-8187028: It was observed that on some configurations (4K backed thread stacks)
  // the real thread stack size may be smaller than the requested stack size, by as much as 64K.
  // This very much looks like a pthread lib error. As a workaround, increase the stack size
  // by 64K for small thread stacks (arbitrarily choosen to be < 4MB)
  if (stack_size < 4096 * K) {
    stack_size += 64 * K;
  }

  // On Aix, pthread_attr_setstacksize fails with huge values and leaves the
  // thread size in attr unchanged. If this is the minimal stack size as set
  // by pthread_attr_init this leads to crashes after thread creation. E.g. the
  // guard pages might not fit on the tiny stack created.
  int ret = pthread_attr_setstacksize(&attr, stack_size);
  if (ret != 0) {
    log_warning(os, thread)("The %sthread stack size specified is invalid: " SIZE_FORMAT "k",
                            (thr_type == compiler_thread) ? "compiler " : ((thr_type == java_thread) ? "" : "VM "),
                            stack_size / K);
    thread->set_osthread(NULL);
    delete osthread;
    return false;
  }

  // Save some cycles and a page by disabling OS guard pages where we have our own
  // VM guard pages (in java threads). For other threads, keep system default guard
  // pages in place.
  if (thr_type == java_thread || thr_type == compiler_thread) {
    ret = pthread_attr_setguardsize(&attr, 0);
  }

  pthread_t tid = 0;
  if (ret == 0) {
    ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
  }

  if (ret == 0) {
    char buf[64];
    log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
      (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
  } else {
    char buf[64];
    log_warning(os, thread)("Failed to start thread - pthread_create failed (%d=%s) for attributes: %s.",
      ret, os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
    // Log some OS information which might explain why creating the thread failed.
    log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
    LogStream st(Log(os, thread)::info());
    os::Posix::print_rlimit_info(&st);
    os::print_memory_info(&st);
  }

  pthread_attr_destroy(&attr);

  if (ret != 0) {
    // Need to clean up stuff we've allocated so far.
    thread->set_osthread(NULL);
    delete osthread;
    return false;
  }

  // OSThread::thread_id is the pthread id.
  osthread->set_thread_id(tid);

  return true;
}

/////////////////////////////////////////////////////////////////////////////
// attach existing thread

// bootstrap the main thread
bool os::create_main_thread(JavaThread* thread) {
  assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
  return create_attached_thread(thread);
}

bool os::create_attached_thread(JavaThread* thread) {
#ifdef ASSERT
    thread->verify_not_published();
#endif

  // Allocate the OSThread object
  OSThread* osthread = new OSThread(NULL, NULL);

  if (osthread == NULL) {
    return false;
  }

  const pthread_t pthread_id = ::pthread_self();
  const tid_t kernel_thread_id = ::thread_self();

  // OSThread::thread_id is the pthread id.
  osthread->set_thread_id(pthread_id);

  // .. but keep kernel thread id too for diagnostics
  osthread->set_kernel_thread_id(kernel_thread_id);

  // initialize floating point control register
  os::Aix::init_thread_fpu_state();

  // Initial thread state is RUNNABLE
  osthread->set_state(RUNNABLE);

  thread->set_osthread(osthread);

  if (UseNUMA) {
    int lgrp_id = os::numa_get_group_id();
    if (lgrp_id != -1) {
      thread->set_lgrp_id(lgrp_id);
    }
  }

  // initialize signal mask for this thread
  // and save the caller's signal mask
  os::Aix::hotspot_sigmask(thread);

  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
    os::current_thread_id(), (uintx) kernel_thread_id);

  return true;
}

void os::pd_start_thread(Thread* thread) {
  int status = pthread_continue_np(thread->osthread()->pthread_id());
  assert(status == 0, "thr_continue failed");
}

// Free OS resources related to the OSThread
void os::free_thread(OSThread* osthread) {
  assert(osthread != NULL, "osthread not set");

  // We are told to free resources of the argument thread,
  // but we can only really operate on the current thread.
  assert(Thread::current()->osthread() == osthread,
         "os::free_thread but not current thread");

  // Restore caller's signal mask
  sigset_t sigmask = osthread->caller_sigmask();
  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);

  delete osthread;
}

////////////////////////////////////////////////////////////////////////////////
// time support

// Time since start-up in seconds to a fine granularity.
// Used by VMSelfDestructTimer and the MemProfiler.
double os::elapsedTime() {
  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
}

jlong os::elapsed_counter() {
  return javaTimeNanos() - initial_time_count;
}

jlong os::elapsed_frequency() {
  return NANOSECS_PER_SEC; // nanosecond resolution
}

bool os::supports_vtime() { return true; }

double os::elapsedVTime() {
  struct rusage usage;
  int retval = getrusage(RUSAGE_THREAD, &usage);
  if (retval == 0) {
    return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
  } else {
    // better than nothing, but not much
    return elapsedTime();
  }
}

jlong os::javaTimeMillis() {
  timeval time;
  int status = gettimeofday(&time, NULL);
  assert(status != -1, "aix error at gettimeofday()");
  return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
}

void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
  timeval time;
  int status = gettimeofday(&time, NULL);
  assert(status != -1, "aix error at gettimeofday()");
  seconds = jlong(time.tv_sec);
  nanos = jlong(time.tv_usec) * 1000;
}

// We use mread_real_time here.
// On AIX: If the CPU has a time register, the result will be RTC_POWER and
// it has to be converted to real time. AIX documentations suggests to do
// this unconditionally, so we do it.
//
// See: https://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.basetrf2/read_real_time.htm
//
// On PASE: mread_real_time will always return RTC_POWER_PC data, so no
// conversion is necessary. However, mread_real_time will not return
// monotonic results but merely matches read_real_time. So we need a tweak
// to ensure monotonic results.
//
// For PASE no public documentation exists, just word by IBM
jlong os::javaTimeNanos() {
  timebasestruct_t time;
  int rc = mread_real_time(&time, TIMEBASE_SZ);
  if (os::Aix::on_pase()) {
    assert(rc == RTC_POWER, "expected time format RTC_POWER from mread_real_time in PASE");
    jlong now = jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
    jlong prev = max_real_time;
    if (now <= prev) {
      return prev;   // same or retrograde time;
    }
    jlong obsv = Atomic::cmpxchg(&max_real_time, prev, now);
    assert(obsv >= prev, "invariant");   // Monotonicity
    // If the CAS succeeded then we're done and return "now".
    // If the CAS failed and the observed value "obsv" is >= now then
    // we should return "obsv".  If the CAS failed and now > obsv > prv then
    // some other thread raced this thread and installed a new value, in which case
    // we could either (a) retry the entire operation, (b) retry trying to install now
    // or (c) just return obsv.  We use (c).   No loop is required although in some cases
    // we might discard a higher "now" value in deference to a slightly lower but freshly
    // installed obsv value.   That's entirely benign -- it admits no new orderings compared
    // to (a) or (b) -- and greatly reduces coherence traffic.
    // We might also condition (c) on the magnitude of the delta between obsv and now.
    // Avoiding excessive CAS operations to hot RW locations is critical.
    // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
    return (prev == obsv) ? now : obsv;
  } else {
    if (rc != RTC_POWER) {
      rc = time_base_to_time(&time, TIMEBASE_SZ);
      assert(rc != -1, "error calling time_base_to_time()");
    }
    return jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
  }
}

void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  info_ptr->max_value = ALL_64_BITS;
  // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
  info_ptr->may_skip_backward = false;
  info_ptr->may_skip_forward = false;
  info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
}

// Return the real, user, and system times in seconds from an
// arbitrary fixed point in the past.
bool os::getTimesSecs(double* process_real_time,
                      double* process_user_time,
                      double* process_system_time) {
  struct tms ticks;
  clock_t real_ticks = times(&ticks);

  if (real_ticks == (clock_t) (-1)) {
    return false;
  } else {
    double ticks_per_second = (double) clock_tics_per_sec;
    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
    *process_real_time = ((double) real_ticks) / ticks_per_second;

    return true;
  }
}

char * os::local_time_string(char *buf, size_t buflen) {
  struct tm t;
  time_t long_time;
  time(&long_time);
  localtime_r(&long_time, &t);
  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
               t.tm_hour, t.tm_min, t.tm_sec);
  return buf;
}

struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
  return localtime_r(clock, res);
}

////////////////////////////////////////////////////////////////////////////////
// runtime exit support

// Note: os::shutdown() might be called very early during initialization, or
// called from signal handler. Before adding something to os::shutdown(), make
// sure it is async-safe and can handle partially initialized VM.
void os::shutdown() {

  // allow PerfMemory to attempt cleanup of any persistent resources
  perfMemory_exit();

  // needs to remove object in file system
  AttachListener::abort();

  // flush buffered output, finish log files
  ostream_abort();

  // Check for abort hook
  abort_hook_t abort_hook = Arguments::abort_hook();
  if (abort_hook != NULL) {
    abort_hook();
  }
}

// Note: os::abort() might be called very early during initialization, or
// called from signal handler. Before adding something to os::abort(), make
// sure it is async-safe and can handle partially initialized VM.
void os::abort(bool dump_core, void* siginfo, const void* context) {
  os::shutdown();
  if (dump_core) {
#ifndef PRODUCT
    fdStream out(defaultStream::output_fd());
    out.print_raw("Current thread is ");
    char buf[16];
    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
    out.print_raw_cr(buf);
    out.print_raw_cr("Dumping core ...");
#endif
    ::abort(); // dump core
  }

  ::exit(1);
}

// Die immediately, no exit hook, no abort hook, no cleanup.
// Dump a core file, if possible, for debugging.
void os::die() {
  if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
    // For TimeoutInErrorHandlingTest.java, we just kill the VM
    // and don't take the time to generate a core file.
    os::signal_raise(SIGKILL);
  } else {
    ::abort();
  }
}

intx os::current_thread_id() {
  return (intx)pthread_self();
}

int os::current_process_id() {
  return getpid();
}

// DLL functions

const char* os::dll_file_extension() { return ".so"; }

// This must be hard coded because it's the system's temporary
// directory not the java application's temp directory, ala java.io.tmpdir.
const char* os::get_temp_directory() { return "/tmp"; }

// Check if addr is inside libjvm.so.
bool os::address_is_in_vm(address addr) {

  // Input could be a real pc or a function pointer literal. The latter
  // would be a function descriptor residing in the data segment of a module.
  loaded_module_t lm;
  if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL) {
    return lm.is_in_vm;
  } else if (LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
    return lm.is_in_vm;
  } else {
    return false;
  }

}

// Resolve an AIX function descriptor literal to a code pointer.
// If the input is a valid code pointer to a text segment of a loaded module,
//   it is returned unchanged.
// If the input is a valid AIX function descriptor, it is resolved to the
//   code entry point.
// If the input is neither a valid function descriptor nor a valid code pointer,
//   NULL is returned.
static address resolve_function_descriptor_to_code_pointer(address p) {

  if (LoadedLibraries::find_for_text_address(p, NULL) != NULL) {
    // It is a real code pointer.
    return p;
  } else if (LoadedLibraries::find_for_data_address(p, NULL) != NULL) {
    // Pointer to data segment, potential function descriptor.
    address code_entry = (address)(((FunctionDescriptor*)p)->entry());
    if (LoadedLibraries::find_for_text_address(code_entry, NULL) != NULL) {
      // It is a function descriptor.
      return code_entry;
    }
  }

  return NULL;
}

bool os::dll_address_to_function_name(address addr, char *buf,
                                      int buflen, int *offset,
                                      bool demangle) {
  if (offset) {
    *offset = -1;
  }
  // Buf is not optional, but offset is optional.
  assert(buf != NULL, "sanity check");
  buf[0] = '\0';

  // Resolve function ptr literals first.
  addr = resolve_function_descriptor_to_code_pointer(addr);
  if (!addr) {
    return false;
  }

  return AixSymbols::get_function_name(addr, buf, buflen, offset, NULL, demangle);
}

bool os::dll_address_to_library_name(address addr, char* buf,
                                     int buflen, int* offset) {
  if (offset) {
    *offset = -1;
  }
  // Buf is not optional, but offset is optional.
  assert(buf != NULL, "sanity check");
  buf[0] = '\0';

  // Resolve function ptr literals first.
  addr = resolve_function_descriptor_to_code_pointer(addr);
  if (!addr) {
    return false;
  }

  return AixSymbols::get_module_name(addr, buf, buflen);
}

// Loads .dll/.so and in case of error it checks if .dll/.so was built
// for the same architecture as Hotspot is running on.
void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {

  log_info(os)("attempting shared library load of %s", filename);

  if (ebuf && ebuflen > 0) {
    ebuf[0] = '\0';
    ebuf[ebuflen - 1] = '\0';
  }

  if (!filename || strlen(filename) == 0) {
    ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
    return NULL;
  }

  // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
  void * result= ::dlopen(filename, RTLD_LAZY);
  if (result != NULL) {
    Events::log(NULL, "Loaded shared library %s", filename);
    // Reload dll cache. Don't do this in signal handling.
    LoadedLibraries::reload();
    log_info(os)("shared library load of %s was successful", filename);
    return result;
  } else {
    // error analysis when dlopen fails
    const char* error_report = ::dlerror();
    if (error_report == NULL) {
      error_report = "dlerror returned no error description";
    }
    if (ebuf != NULL && ebuflen > 0) {
      snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
               filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
    }
    Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
    log_info(os)("shared library load of %s failed, %s", filename, error_report);
  }
  return NULL;
}

void* os::dll_lookup(void* handle, const char* name) {
  void* res = dlsym(handle, name);
  return res;
}

void* os::get_default_process_handle() {
  return (void*)::dlopen(NULL, RTLD_LAZY);
}

void os::print_dll_info(outputStream *st) {
  st->print_cr("Dynamic libraries:");
  LoadedLibraries::print(st);
}

void os::get_summary_os_info(char* buf, size_t buflen) {
  // There might be something more readable than uname results for AIX.
  struct utsname name;
  uname(&name);
  snprintf(buf, buflen, "%s %s", name.release, name.version);
}

int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
  // Not yet implemented.
  return 0;
}

void os::print_os_info_brief(outputStream* st) {
  uint32_t ver = os::Aix::os_version();
  st->print_cr("AIX kernel version %u.%u.%u.%u",
               (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);

  os::Posix::print_uname_info(st);

  // Linux uses print_libversion_info(st); here.
}

void os::print_os_info(outputStream* st) {
  st->print("OS:");

  os::Posix::print_uname_info(st);

  uint32_t ver = os::Aix::os_version();
  st->print_cr("AIX kernel version %u.%u.%u.%u",
               (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);

  os::Posix::print_uptime_info(st);

  os::Posix::print_rlimit_info(st);

  os::Posix::print_load_average(st);

  // _SC_THREAD_THREADS_MAX is the maximum number of threads within a process.
  long tmax = sysconf(_SC_THREAD_THREADS_MAX);
  st->print_cr("maximum #threads within a process:%ld", tmax);

  // print wpar info
  libperfstat::wparinfo_t wi;
  if (libperfstat::get_wparinfo(&wi)) {
    st->print_cr("wpar info");
    st->print_cr("name: %s", wi.name);
    st->print_cr("id:   %d", wi.wpar_id);
    st->print_cr("type: %s", (wi.app_wpar ? "application" : "system"));
  }

  VM_Version::print_platform_virtualization_info(st);
}

void os::print_memory_info(outputStream* st) {

  st->print_cr("Memory:");

  st->print_cr("  Base page size (sysconf _SC_PAGESIZE):  %s",
    describe_pagesize(g_multipage_support.pagesize));
  st->print_cr("  Data page size (C-Heap, bss, etc):      %s",
    describe_pagesize(g_multipage_support.datapsize));
  st->print_cr("  Text page size:                         %s",
    describe_pagesize(g_multipage_support.textpsize));
  st->print_cr("  Thread stack page size (pthread):       %s",
    describe_pagesize(g_multipage_support.pthr_stack_pagesize));
  st->print_cr("  Default shared memory page size:        %s",
    describe_pagesize(g_multipage_support.shmpsize));
  st->print_cr("  Can use 64K pages dynamically with shared memory:  %s",
    (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
  st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
    (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
  st->print_cr("  Multipage error: %d",
    g_multipage_support.error);
  st->cr();
  st->print_cr("  os::vm_page_size:       %s", describe_pagesize(os::vm_page_size()));

  // print out LDR_CNTRL because it affects the default page sizes
  const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
  st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");

  // Print out EXTSHM because it is an unsupported setting.
  const char* const extshm = ::getenv("EXTSHM");
  st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
  if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
    st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
  }

  // Print out AIXTHREAD_GUARDPAGES because it affects the size of pthread stacks.
  const char* const aixthread_guardpages = ::getenv("AIXTHREAD_GUARDPAGES");
  st->print_cr("  AIXTHREAD_GUARDPAGES=%s.",
      aixthread_guardpages ? aixthread_guardpages : "<unset>");
  st->cr();

  os::Aix::meminfo_t mi;
  if (os::Aix::get_meminfo(&mi)) {
    if (os::Aix::on_aix()) {
      st->print_cr("physical total : " SIZE_FORMAT, mi.real_total);
      st->print_cr("physical free  : " SIZE_FORMAT, mi.real_free);
      st->print_cr("swap total     : " SIZE_FORMAT, mi.pgsp_total);
      st->print_cr("swap free      : " SIZE_FORMAT, mi.pgsp_free);
    } else {
      // PASE - Numbers are result of QWCRSSTS; they mean:
      // real_total: Sum of all system pools
      // real_free: always 0
      // pgsp_total: we take the size of the system ASP
      // pgsp_free: size of system ASP times percentage of system ASP unused
      st->print_cr("physical total     : " SIZE_FORMAT, mi.real_total);
      st->print_cr("system asp total   : " SIZE_FORMAT, mi.pgsp_total);
      st->print_cr("%% system asp used : %.2f",
        mi.pgsp_total ? (100.0f * (mi.pgsp_total - mi.pgsp_free) / mi.pgsp_total) : -1.0f);
    }
  }
  st->cr();

  // Print program break.
  st->print_cr("Program break at VM startup: " PTR_FORMAT ".", p2i(g_brk_at_startup));
  address brk_now = (address)::sbrk(0);
  if (brk_now != (address)-1) {
    st->print_cr("Program break now          : " PTR_FORMAT " (distance: " SIZE_FORMAT "k).",
                 p2i(brk_now), (size_t)((brk_now - g_brk_at_startup) / K));
  }
  st->print_cr("MaxExpectedDataSegmentSize    : " SIZE_FORMAT "k.", MaxExpectedDataSegmentSize / K);
  st->cr();

  // Print segments allocated with os::reserve_memory.
  st->print_cr("internal virtual memory regions used by vm:");
  vmembk_print_on(st);
}

// Get a string for the cpuinfo that is a summary of the cpu type
void os::get_summary_cpu_info(char* buf, size_t buflen) {
  // read _system_configuration.version
  switch (_system_configuration.version) {
  case PV_9:
    strncpy(buf, "Power PC 9", buflen);
    break;
  case PV_8:
    strncpy(buf, "Power PC 8", buflen);
    break;
  case PV_7:
    strncpy(buf, "Power PC 7", buflen);
    break;
  case PV_6_1:
    strncpy(buf, "Power PC 6 DD1.x", buflen);
    break;
  case PV_6:
    strncpy(buf, "Power PC 6", buflen);
    break;
  case PV_5:
    strncpy(buf, "Power PC 5", buflen);
    break;
  case PV_5_2:
    strncpy(buf, "Power PC 5_2", buflen);
    break;
  case PV_5_3:
    strncpy(buf, "Power PC 5_3", buflen);
    break;
  case PV_5_Compat:
    strncpy(buf, "PV_5_Compat", buflen);
    break;
  case PV_6_Compat:
    strncpy(buf, "PV_6_Compat", buflen);
    break;
  case PV_7_Compat:
    strncpy(buf, "PV_7_Compat", buflen);
    break;
  case PV_8_Compat:
    strncpy(buf, "PV_8_Compat", buflen);
    break;
  case PV_9_Compat:
    strncpy(buf, "PV_9_Compat", buflen);
    break;
  default:
    strncpy(buf, "unknown", buflen);
  }
}

void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
  // Nothing to do beyond of what os::print_cpu_info() does.
}

static void print_signal_handler(outputStream* st, int sig,
                                 char* buf, size_t buflen);

void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  st->print_cr("Signal Handlers:");
  print_signal_handler(st, SIGSEGV, buf, buflen);
  print_signal_handler(st, SIGBUS , buf, buflen);
  print_signal_handler(st, SIGFPE , buf, buflen);
  print_signal_handler(st, SIGPIPE, buf, buflen);
  print_signal_handler(st, SIGXFSZ, buf, buflen);
  print_signal_handler(st, SIGILL , buf, buflen);
  print_signal_handler(st, SR_signum, buf, buflen);
  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  print_signal_handler(st, SIGTRAP, buf, buflen);
  // We also want to know if someone else adds a SIGDANGER handler because
  // that will interfere with OOM killling.
  print_signal_handler(st, SIGDANGER, buf, buflen);
}

static char saved_jvm_path[MAXPATHLEN] = {0};

// Find the full path to the current module, libjvm.so.
void os::jvm_path(char *buf, jint buflen) {
  // Error checking.
  if (buflen < MAXPATHLEN) {
    assert(false, "must use a large-enough buffer");
    buf[0] = '\0';
    return;
  }
  // Lazy resolve the path to current module.
  if (saved_jvm_path[0] != 0) {
    strcpy(buf, saved_jvm_path);
    return;
  }

  Dl_info dlinfo;
  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
  assert(ret != 0, "cannot locate libjvm");
  char* rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
  assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");

  if (Arguments::sun_java_launcher_is_altjvm()) {
    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
    // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
    // If "/jre/lib/" appears at the right place in the string, then
    // assume we are installed in a JDK and we're done. Otherwise, check
    // for a JAVA_HOME environment variable and fix up the path so it
    // looks like libjvm.so is installed there (append a fake suffix
    // hotspot/libjvm.so).
    const char *p = buf + strlen(buf) - 1;
    for (int count = 0; p > buf && count < 4; ++count) {
      for (--p; p > buf && *p != '/'; --p)
        /* empty */ ;
    }

    if (strncmp(p, "/jre/lib/", 9) != 0) {
      // Look for JAVA_HOME in the environment.
      char* java_home_var = ::getenv("JAVA_HOME");
      if (java_home_var != NULL && java_home_var[0] != 0) {
        char* jrelib_p;
        int len;

        // Check the current module name "libjvm.so".
        p = strrchr(buf, '/');
        if (p == NULL) {
          return;
        }
        assert(strstr(p, "/libjvm") == p, "invalid library name");

        rp = os::Posix::realpath(java_home_var, buf, buflen);
        if (rp == NULL) {
          return;
        }

        // determine if this is a legacy image or modules image
        // modules image doesn't have "jre" subdirectory
        len = strlen(buf);
        assert(len < buflen, "Ran out of buffer room");
        jrelib_p = buf + len;
        snprintf(jrelib_p, buflen-len, "/jre/lib");
        if (0 != access(buf, F_OK)) {
          snprintf(jrelib_p, buflen-len, "/lib");
        }

        if (0 == access(buf, F_OK)) {
          // Use current module name "libjvm.so"
          len = strlen(buf);
          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
        } else {
          // Go back to path of .so
          rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
          if (rp == NULL) {
            return;
          }
        }
      }
    }
  }

  strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
  saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
}

void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  // no prefix required, not even "_"
}

void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  // no suffix required
}

////////////////////////////////////////////////////////////////////////////////
// sun.misc.Signal support

static void
UserHandler(int sig, void *siginfo, void *context) {
  // Ctrl-C is pressed during error reporting, likely because the error
  // handler fails to abort. Let VM die immediately.
  if (sig == SIGINT && VMError::is_error_reported()) {
    os::die();
  }

  os::signal_notify(sig);
}

void* os::user_handler() {
  return CAST_FROM_FN_PTR(void*, UserHandler);
}

extern "C" {
  typedef void (*sa_handler_t)(int);
  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
}

void* os::signal(int signal_number, void* handler) {
  struct sigaction sigAct, oldSigAct;

  sigfillset(&(sigAct.sa_mask));

  // Do not block out synchronous signals in the signal handler.
  // Blocking synchronous signals only makes sense if you can really
  // be sure that those signals won't happen during signal handling,
  // when the blocking applies. Normal signal handlers are lean and
  // do not cause signals. But our signal handlers tend to be "risky"
  // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
  // On AIX, PASE there was a case where a SIGSEGV happened, followed
  // by a SIGILL, which was blocked due to the signal mask. The process
  // just hung forever. Better to crash from a secondary signal than to hang.
  sigdelset(&(sigAct.sa_mask), SIGSEGV);
  sigdelset(&(sigAct.sa_mask), SIGBUS);
  sigdelset(&(sigAct.sa_mask), SIGILL);
  sigdelset(&(sigAct.sa_mask), SIGFPE);
  sigdelset(&(sigAct.sa_mask), SIGTRAP);

  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;

  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);

  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
    // -1 means registration failed
    return (void *)-1;
  }

  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
}

void os::signal_raise(int signal_number) {
  ::raise(signal_number);
}

//
// The following code is moved from os.cpp for making this
// code platform specific, which it is by its very nature.
//

// Will be modified when max signal is changed to be dynamic
int os::sigexitnum_pd() {
  return NSIG;
}

// a counter for each possible signal value
static volatile jint pending_signals[NSIG+1] = { 0 };

// Wrapper functions for: sem_init(), sem_post(), sem_wait()
// On AIX, we use sem_init(), sem_post(), sem_wait()
// On Pase, we need to use msem_lock() and msem_unlock(), because Posix Semaphores
// do not seem to work at all on PASE (unimplemented, will cause SIGILL).
// Note that just using msem_.. APIs for both PASE and AIX is not an option either, as
// on AIX, msem_..() calls are suspected of causing problems.
static sem_t sig_sem;
static msemaphore* p_sig_msem = 0;

static void local_sem_init() {
  if (os::Aix::on_aix()) {
    int rc = ::sem_init(&sig_sem, 0, 0);
    guarantee(rc != -1, "sem_init failed");
  } else {
    // Memory semaphores must live in shared mem.
    guarantee0(p_sig_msem == NULL);
    p_sig_msem = (msemaphore*)os::reserve_memory(sizeof(msemaphore), NULL);
    guarantee(p_sig_msem, "Cannot allocate memory for memory semaphore");
    guarantee(::msem_init(p_sig_msem, 0) == p_sig_msem, "msem_init failed");
  }
}

static void local_sem_post() {
  static bool warn_only_once = false;
  if (os::Aix::on_aix()) {
    int rc = ::sem_post(&sig_sem);
    if (rc == -1 && !warn_only_once) {
      trcVerbose("sem_post failed (errno = %d, %s)", errno, os::errno_name(errno));
      warn_only_once = true;
    }
  } else {
    guarantee0(p_sig_msem != NULL);
    int rc = ::msem_unlock(p_sig_msem, 0);
    if (rc == -1 && !warn_only_once) {
      trcVerbose("msem_unlock failed (errno = %d, %s)", errno, os::errno_name(errno));
      warn_only_once = true;
    }
  }
}

static void local_sem_wait() {
  static bool warn_only_once = false;
  if (os::Aix::on_aix()) {
    int rc = ::sem_wait(&sig_sem);
    if (rc == -1 && !warn_only_once) {
      trcVerbose("sem_wait failed (errno = %d, %s)", errno, os::errno_name(errno));
      warn_only_once = true;
    }
  } else {
    guarantee0(p_sig_msem != NULL); // must init before use
    int rc = ::msem_lock(p_sig_msem, 0);
    if (rc == -1 && !warn_only_once) {
      trcVerbose("msem_lock failed (errno = %d, %s)", errno, os::errno_name(errno));
      warn_only_once = true;
    }
  }
}

static void jdk_misc_signal_init() {
  // Initialize signal structures
  ::memset((void*)pending_signals, 0, sizeof(pending_signals));

  // Initialize signal semaphore
  local_sem_init();
}

void os::signal_notify(int sig) {
  Atomic::inc(&pending_signals[sig]);
  local_sem_post();
}

static int check_pending_signals() {
  for (;;) {
    for (int i = 0; i < NSIG + 1; i++) {
      jint n = pending_signals[i];
      if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
        return i;
      }
    }
    JavaThread *thread = JavaThread::current();
    ThreadBlockInVM tbivm(thread);

    bool threadIsSuspended;
    do {
      thread->set_suspend_equivalent();
      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()

      local_sem_wait();

      // were we externally suspended while we were waiting?
      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
      if (threadIsSuspended) {
        //
        // The semaphore has been incremented, but while we were waiting
        // another thread suspended us. We don't want to continue running
        // while suspended because that would surprise the thread that
        // suspended us.
        //

        local_sem_post();

        thread->java_suspend_self();
      }
    } while (threadIsSuspended);
  }
}

int os::signal_wait() {
  return check_pending_signals();
}

////////////////////////////////////////////////////////////////////////////////
// Virtual Memory

// We need to keep small simple bookkeeping for os::reserve_memory and friends.

#define VMEM_MAPPED  1
#define VMEM_SHMATED 2

struct vmembk_t {
  int type;         // 1 - mmap, 2 - shmat
  char* addr;
  size_t size;      // Real size, may be larger than usersize.
  size_t pagesize;  // page size of area
  vmembk_t* next;

  bool contains_addr(char* p) const {
    return p >= addr && p < (addr + size);
  }

  bool contains_range(char* p, size_t s) const {
    return contains_addr(p) && contains_addr(p + s - 1);
  }

  void print_on(outputStream* os) const {
    os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
      " bytes, %d %s pages), %s",
      addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
      (type == VMEM_SHMATED ? "shmat" : "mmap")
    );
  }

  // Check that range is a sub range of memory block (or equal to memory block);
  // also check that range is fully page aligned to the page size if the block.
  void assert_is_valid_subrange(char* p, size_t s) const {
    if (!contains_range(p, s)) {
      trcVerbose("[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
              "range of [" PTR_FORMAT " - " PTR_FORMAT "].",
              p2i(p), p2i(p + s), p2i(addr), p2i(addr + size));
      guarantee0(false);
    }
    if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
      trcVerbose("range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
              " aligned to pagesize (%lu)", p2i(p), p2i(p + s), (unsigned long) pagesize);
      guarantee0(false);
    }
  }
};

static struct {
  vmembk_t* first;
  MiscUtils::CritSect cs;
} vmem;

static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
  vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
  assert0(p);
  if (p) {
    MiscUtils::AutoCritSect lck(&vmem.cs);
    p->addr = addr; p->size = size;
    p->pagesize = pagesize;
    p->type = type;
    p->next = vmem.first;
    vmem.first = p;
  }
}

static vmembk_t* vmembk_find(char* addr) {
  MiscUtils::AutoCritSect lck(&vmem.cs);
  for (vmembk_t* p = vmem.first; p; p = p->next) {
    if (p->addr <= addr && (p->addr + p->size) > addr) {
      return p;
    }
  }
  return NULL;
}

static void vmembk_remove(vmembk_t* p0) {
  MiscUtils::AutoCritSect lck(&vmem.cs);
  assert0(p0);
  assert0(vmem.first); // List should not be empty.
  for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
    if (*pp == p0) {
      *pp = p0->next;
      ::free(p0);
      return;
    }
  }
  assert0(false); // Not found?
}

static void vmembk_print_on(outputStream* os) {
  MiscUtils::AutoCritSect lck(&vmem.cs);
  for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
    vmi->print_on(os);
    os->cr();
  }
}

// Reserve and attach a section of System V memory.
// If <requested_addr> is not NULL, function will attempt to attach the memory at the given
// address. Failing that, it will attach the memory anywhere.
// If <requested_addr> is NULL, function will attach the memory anywhere.
//
// <alignment_hint> is being ignored by this function. It is very probable however that the
// alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
// Should this be not enogh, we can put more work into it.
static char* reserve_shmated_memory (
  size_t bytes,
  char* requested_addr,
  size_t alignment_hint) {

  trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
    PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
    bytes, p2i(requested_addr), alignment_hint);

  // Either give me wish address or wish alignment but not both.
  assert0(!(requested_addr != NULL && alignment_hint != 0));

  // We must prevent anyone from attaching too close to the
  // BRK because that may cause malloc OOM.
  if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
    trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
      "Will attach anywhere.", p2i(requested_addr));
    // Act like the OS refused to attach there.
    requested_addr = NULL;
  }

  // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
  // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
  if (os::Aix::on_pase_V5R4_or_older()) {
    ShouldNotReachHere();
  }

  // Align size of shm up to 64K to avoid errors if we later try to change the page size.
  const size_t size = align_up(bytes, 64*K);

  // Reserve the shared segment.
  int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
  if (shmid == -1) {
    trcVerbose("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
    return NULL;
  }

  // Important note:
  // It is very important that we, upon leaving this function, do not leave a shm segment alive.
  // We must right after attaching it remove it from the system. System V shm segments are global and
  // survive the process.
  // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).

  struct shmid_ds shmbuf;
  memset(&shmbuf, 0, sizeof(shmbuf));
  shmbuf.shm_pagesize = 64*K;
  if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
    trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
               size / (64*K), errno);
    // I want to know if this ever happens.
    assert(false, "failed to set page size for shmat");
  }

  // Now attach the shared segment.
  // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
  // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
  // were not a segment boundary.
  char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
  const int errno_shmat = errno;

  // (A) Right after shmat and before handing shmat errors delete the shm segment.
  if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
    trcVerbose("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
    assert(false, "failed to remove shared memory segment!");
  }

  // Handle shmat error. If we failed to attach, just return.
  if (addr == (char*)-1) {
    trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", p2i(requested_addr), errno_shmat);
    return NULL;
  }

  // Just for info: query the real page size. In case setting the page size did not
  // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
  const size_t real_pagesize = os::Aix::query_pagesize(addr);
  if (real_pagesize != shmbuf.shm_pagesize) {
    trcVerbose("pagesize is, surprisingly, " SIZE_FORMAT, real_pagesize);
  }

  if (addr) {
    trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
      p2i(addr), p2i(addr + size - 1), size, size/real_pagesize, describe_pagesize(real_pagesize));
  } else {
    if (requested_addr != NULL) {
      trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, p2i(requested_addr));
    } else {
      trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
    }
  }

  // book-keeping
  vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
  assert0(is_aligned_to(addr, os::vm_page_size()));

  return addr;
}

static bool release_shmated_memory(char* addr, size_t size) {

  trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
    p2i(addr), p2i(addr + size - 1));

  bool rc = false;

  // TODO: is there a way to verify shm size without doing bookkeeping?
  if (::shmdt(addr) != 0) {
    trcVerbose("error (%d).", errno);
  } else {
    trcVerbose("ok.");
    rc = true;
  }
  return rc;
}

static bool uncommit_shmated_memory(char* addr, size_t size) {
  trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
    p2i(addr), p2i(addr + size - 1));

  const bool rc = my_disclaim64(addr, size);

  if (!rc) {
    trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", p2i(addr), size);
    return false;
  }
  return true;
}

////////////////////////////////  mmap-based routines /////////////////////////////////

// Reserve memory via mmap.
// If <requested_addr> is given, an attempt is made to attach at the given address.
// Failing that, memory is allocated at any address.
// If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
// allocate at an address aligned with the given alignment. Failing that, memory
// is aligned anywhere.
static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
  trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
    "alignment_hint " UINTX_FORMAT "...",
    bytes, p2i(requested_addr), alignment_hint);

  // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
  if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
    trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", p2i(requested_addr));
    return NULL;
  }

  // We must prevent anyone from attaching too close to the
  // BRK because that may cause malloc OOM.
  if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
    trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
      "Will attach anywhere.", p2i(requested_addr));
    // Act like the OS refused to attach there.
    requested_addr = NULL;
  }

  // Specify one or the other but not both.
  assert0(!(requested_addr != NULL && alignment_hint > 0));

  // In 64K mode, we claim the global page size (os::vm_page_size())
  // is 64K. This is one of the few points where that illusion may
  // break, because mmap() will always return memory aligned to 4K. So
  // we must ensure we only ever return memory aligned to 64k.
  if (alignment_hint) {
    alignment_hint = lcm(alignment_hint, os::vm_page_size());
  } else {
    alignment_hint = os::vm_page_size();
  }

  // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
  const size_t size = align_up(bytes, os::vm_page_size());

  // alignment: Allocate memory large enough to include an aligned range of the right size and
  // cut off the leading and trailing waste pages.
  assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
  const size_t extra_size = size + alignment_hint;

  // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
  // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
  int flags = MAP_ANONYMOUS | MAP_SHARED;

  // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
  // it means if wishaddress is given but MAP_FIXED is not set.
  //
  // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
  // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
  // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
  // get clobbered.
  if (requested_addr != NULL) {
    if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
      flags |= MAP_FIXED;
    }
  }

  char* addr = (char*)::mmap(requested_addr, extra_size,
      PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);

  if (addr == MAP_FAILED) {
    trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", p2i(requested_addr), size, errno);
    return NULL;
  }

  // Handle alignment.
  char* const addr_aligned = align_up(addr, alignment_hint);
  const size_t waste_pre = addr_aligned - addr;
  char* const addr_aligned_end = addr_aligned + size;
  const size_t waste_post = extra_size - waste_pre - size;
  if (waste_pre > 0) {
    ::munmap(addr, waste_pre);
  }
  if (waste_post > 0) {
    ::munmap(addr_aligned_end, waste_post);
  }
  addr = addr_aligned;

  if (addr) {
    trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
      p2i(addr), p2i(addr + bytes), bytes);
  } else {
    if (requested_addr != NULL) {
      trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, p2i(requested_addr));
    } else {
      trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
    }
  }

  // bookkeeping
  vmembk_add(addr, size, 4*K, VMEM_MAPPED);

  // Test alignment, see above.
  assert0(is_aligned_to(addr, os::vm_page_size()));

  return addr;
}

static bool release_mmaped_memory(char* addr, size_t size) {
  assert0(is_aligned_to(addr, os::vm_page_size()));
  assert0(is_aligned_to(size, os::vm_page_size()));

  trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
    p2i(addr), p2i(addr + size - 1));
  bool rc = false;

  if (::munmap(addr, size) != 0) {
    trcVerbose("failed (%d)\n", errno);
    rc = false;
  } else {
    trcVerbose("ok.");
    rc = true;
  }

  return rc;
}

static bool uncommit_mmaped_memory(char* addr, size_t size) {

  assert0(is_aligned_to(addr, os::vm_page_size()));
  assert0(is_aligned_to(size, os::vm_page_size()));

  trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
    p2i(addr), p2i(addr + size - 1));
  bool rc = false;

  // Uncommit mmap memory with msync MS_INVALIDATE.
  if (::msync(addr, size, MS_INVALIDATE) != 0) {
    trcVerbose("failed (%d)\n", errno);
    rc = false;
  } else {
    trcVerbose("ok.");
    rc = true;
  }

  return rc;
}

int os::vm_page_size() {
  // Seems redundant as all get out.
  assert(os::Aix::page_size() != -1, "must call os::init");
  return os::Aix::page_size();
}

// Aix allocates memory by pages.
int os::vm_allocation_granularity() {
  assert(os::Aix::page_size() != -1, "must call os::init");
  return os::Aix::page_size();
}

#ifdef PRODUCT
static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
                                    int err) {
  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
          os::errno_name(err), err);
}
#endif

void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
                                  const char* mesg) {
  assert(mesg != NULL, "mesg must be specified");
  if (!pd_commit_memory(addr, size, exec)) {
    // Add extra info in product mode for vm_exit_out_of_memory():
    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
  }
}

bool os::pd_commit_memory(char* addr, size_t size, bool exec) {

  assert(is_aligned_to(addr, os::vm_page_size()),
    "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
    p2i(addr), os::vm_page_size());
  assert(is_aligned_to(size, os::vm_page_size()),
    "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
    size, os::vm_page_size());

  vmembk_t* const vmi = vmembk_find(addr);
  guarantee0(vmi);
  vmi->assert_is_valid_subrange(addr, size);

  trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", p2i(addr), p2i(addr + size - 1));

  if (UseExplicitCommit) {
    // AIX commits memory on touch. So, touch all pages to be committed.
    for (char* p = addr; p < (addr + size); p += 4*K) {
      *p = '\0';
    }
  }

  return true;
}

bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
  return pd_commit_memory(addr, size, exec);
}

void os::pd_commit_memory_or_exit(char* addr, size_t size,
                                  size_t alignment_hint, bool exec,
                                  const char* mesg) {
  // Alignment_hint is ignored on this OS.
  pd_commit_memory_or_exit(addr, size, exec, mesg);
}

bool os::pd_uncommit_memory(char* addr, size_t size) {
  assert(is_aligned_to(addr, os::vm_page_size()),
    "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
    p2i(addr), os::vm_page_size());
  assert(is_aligned_to(size, os::vm_page_size()),
    "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
    size, os::vm_page_size());

  // Dynamically do different things for mmap/shmat.
  const vmembk_t* const vmi = vmembk_find(addr);
  guarantee0(vmi);
  vmi->assert_is_valid_subrange(addr, size);

  if (vmi->type == VMEM_SHMATED) {
    return uncommit_shmated_memory(addr, size);
  } else {
    return uncommit_mmaped_memory(addr, size);
  }
}

bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  // Do not call this; no need to commit stack pages on AIX.
  ShouldNotReachHere();
  return true;
}

bool os::remove_stack_guard_pages(char* addr, size_t size) {
  // Do not call this; no need to commit stack pages on AIX.
  ShouldNotReachHere();
  return true;
}

void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
}

void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
}

void os::numa_make_global(char *addr, size_t bytes) {
}

void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
}

bool os::numa_topology_changed() {
  return false;
}

size_t os::numa_get_groups_num() {
  return 1;
}

int os::numa_get_group_id() {
  return 0;
}

size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  if (size > 0) {
    ids[0] = 0;
    return 1;
  }
  return 0;
}

int os::numa_get_group_id_for_address(const void* address) {
  return 0;
}

bool os::get_page_info(char *start, page_info* info) {
  return false;
}

char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  return end;
}

// Reserves and attaches a shared memory segment.
// Will assert if a wish address is given and could not be obtained.
char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {

  // All other Unices do a mmap(MAP_FIXED) if the addr is given,
  // thereby clobbering old mappings at that place. That is probably
  // not intended, never used and almost certainly an error were it
  // ever be used this way (to try attaching at a specified address
  // without clobbering old mappings an alternate API exists,
  // os::attempt_reserve_memory_at()).
  // Instead of mimicking the dangerous coding of the other platforms, here I
  // just ignore the request address (release) or assert(debug).
  assert0(requested_addr == NULL);

  // Always round to os::vm_page_size(), which may be larger than 4K.
  bytes = align_up(bytes, os::vm_page_size());
  const size_t alignment_hint0 =
    alignment_hint ? align_up(alignment_hint, os::vm_page_size()) : 0;

  // In 4K mode always use mmap.
  // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
  if (os::vm_page_size() == 4*K) {
    return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
  } else {
    if (bytes >= Use64KPagesThreshold) {
      return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
    } else {
      return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
    }
  }
}

bool os::pd_release_memory(char* addr, size_t size) {

  // Dynamically do different things for mmap/shmat.
  vmembk_t* const vmi = vmembk_find(addr);
  guarantee0(vmi);

  // Always round to os::vm_page_size(), which may be larger than 4K.
  size = align_up(size, os::vm_page_size());
  addr = align_up(addr, os::vm_page_size());

  bool rc = false;
  bool remove_bookkeeping = false;
  if (vmi->type == VMEM_SHMATED) {
    // For shmatted memory, we do:
    // - If user wants to release the whole range, release the memory (shmdt).
    // - If user only wants to release a partial range, uncommit (disclaim) that
    //   range. That way, at least, we do not use memory anymore (bust still page
    //   table space).
    vmi->assert_is_valid_subrange(addr, size);
    if (addr == vmi->addr && size == vmi->size) {
      rc = release_shmated_memory(addr, size);
      remove_bookkeeping = true;
    } else {
      rc = uncommit_shmated_memory(addr, size);
    }
  } else {
    // User may unmap partial regions but region has to be fully contained.
#ifdef ASSERT
    vmi->assert_is_valid_subrange(addr, size);
#endif
    rc = release_mmaped_memory(addr, size);
    remove_bookkeeping = true;
  }

  // update bookkeeping
  if (rc && remove_bookkeeping) {
    vmembk_remove(vmi);
  }

  return rc;
}

static bool checked_mprotect(char* addr, size_t size, int prot) {

  // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
  // not tell me if protection failed when trying to protect an un-protectable range.
  //
  // This means if the memory was allocated using shmget/shmat, protection wont work
  // but mprotect will still return 0:
  //
  // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm

  Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+size), prot);
  bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;

  if (!rc) {
    const char* const s_errno = os::errno_name(errno);
    warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
    return false;
  }

  // mprotect success check
  //
  // Mprotect said it changed the protection but can I believe it?
  //
  // To be sure I need to check the protection afterwards. Try to
  // read from protected memory and check whether that causes a segfault.
  //
  if (!os::Aix::xpg_sus_mode()) {

    if (CanUseSafeFetch32()) {

      const bool read_protected =
        (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
         SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;

      if (prot & PROT_READ) {
        rc = !read_protected;
      } else {
        rc = read_protected;
      }

      if (!rc) {
        if (os::Aix::on_pase()) {
          // There is an issue on older PASE systems where mprotect() will return success but the
          // memory will not be protected.
          // This has nothing to do with the problem of using mproect() on SPEC1170 incompatible
          // machines; we only see it rarely, when using mprotect() to protect the guard page of
          // a stack. It is an OS error.
          //
          // A valid strategy is just to try again. This usually works. :-/

          ::usleep(1000);
          Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+size), prot);
          if (::mprotect(addr, size, prot) == 0) {
            const bool read_protected_2 =
              (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
              SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
            rc = true;
          }
        }
      }
    }
  }

  assert(rc == true, "mprotect failed.");

  return rc;
}

// Set protections specified
bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
  unsigned int p = 0;
  switch (prot) {
  case MEM_PROT_NONE: p = PROT_NONE; break;
  case MEM_PROT_READ: p = PROT_READ; break;
  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  default:
    ShouldNotReachHere();
  }
  // is_committed is unused.
  return checked_mprotect(addr, size, p);
}

bool os::guard_memory(char* addr, size_t size) {
  return checked_mprotect(addr, size, PROT_NONE);
}

bool os::unguard_memory(char* addr, size_t size) {
  return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
}

// Large page support

static size_t _large_page_size = 0;

// Enable large page support if OS allows that.
void os::large_page_init() {
  return; // Nothing to do. See query_multipage_support and friends.
}

char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  // reserve_memory_special() is used to allocate large paged memory. On AIX, we implement
  // 64k paged memory reservation using the normal memory allocation paths (os::reserve_memory()),
  // so this is not needed.
  assert(false, "should not be called on AIX");
  return NULL;
}

bool os::release_memory_special(char* base, size_t bytes) {
  // Detaching the SHM segment will also delete it, see reserve_memory_special().
  Unimplemented();
  return false;
}

size_t os::large_page_size() {
  return _large_page_size;
}

bool os::can_commit_large_page_memory() {
  // Does not matter, we do not support huge pages.
  return false;
}

bool os::can_execute_large_page_memory() {
  // Does not matter, we do not support huge pages.
  return false;
}

char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
  assert(file_desc >= 0, "file_desc is not valid");
  char* result = NULL;

  // Always round to os::vm_page_size(), which may be larger than 4K.
  bytes = align_up(bytes, os::vm_page_size());
  result = reserve_mmaped_memory(bytes, requested_addr, 0);

  if (result != NULL) {
    if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
      vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
    }
  }
  return result;
}

// Reserve memory at an arbitrary address, only if that area is
// available (and not reserved for something else).
char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  char* addr = NULL;

  // Always round to os::vm_page_size(), which may be larger than 4K.
  bytes = align_up(bytes, os::vm_page_size());

  // In 4K mode always use mmap.
  // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
  if (os::vm_page_size() == 4*K) {
    return reserve_mmaped_memory(bytes, requested_addr, 0);
  } else {
    if (bytes >= Use64KPagesThreshold) {
      return reserve_shmated_memory(bytes, requested_addr, 0);
    } else {
      return reserve_mmaped_memory(bytes, requested_addr, 0);
    }
  }

  return addr;
}

// Sleep forever; naked call to OS-specific sleep; use with CAUTION
void os::infinite_sleep() {
  while (true) {    // sleep forever ...
    ::sleep(100);   // ... 100 seconds at a time
  }
}

// Used to convert frequent JVM_Yield() to nops
bool os::dont_yield() {
  return DontYieldALot;
}

void os::naked_yield() {
  sched_yield();
}

////////////////////////////////////////////////////////////////////////////////
// thread priority support

// From AIX manpage to pthread_setschedparam
// (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
//    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
//
// "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
// range from 40 to 80, where 40 is the least favored priority and 80
// is the most favored."
//
// (Actually, I doubt this even has an impact on AIX, as we do kernel
// scheduling there; however, this still leaves iSeries.)
//
// We use the same values for AIX and PASE.
int os::java_to_os_priority[CriticalPriority + 1] = {
  54,             // 0 Entry should never be used

  55,             // 1 MinPriority
  55,             // 2
  56,             // 3

  56,             // 4
  57,             // 5 NormPriority
  57,             // 6

  58,             // 7
  58,             // 8
  59,             // 9 NearMaxPriority

  60,             // 10 MaxPriority

  60              // 11 CriticalPriority
};

static int prio_init() {
  if (ThreadPriorityPolicy == 1) {
    if (geteuid() != 0) {
      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
        warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
                "e.g., being the root user. If the necessary permission is not " \
                "possessed, changes to priority will be silently ignored.");
      }
    }
  }
  if (UseCriticalJavaThreadPriority) {
    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  }
  return 0;
}

OSReturn os::set_native_priority(Thread* thread, int newpri) {
  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
  pthread_t thr = thread->osthread()->pthread_id();
  int policy = SCHED_OTHER;
  struct sched_param param;
  param.sched_priority = newpri;
  int ret = pthread_setschedparam(thr, policy, &param);

  if (ret != 0) {
    trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
        (int)thr, newpri, ret, os::errno_name(ret));
  }
  return (ret == 0) ? OS_OK : OS_ERR;
}

OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
    *priority_ptr = java_to_os_priority[NormPriority];
    return OS_OK;
  }
  pthread_t thr = thread->osthread()->pthread_id();
  int policy = SCHED_OTHER;
  struct sched_param param;
  int ret = pthread_getschedparam(thr, &policy, &param);
  *priority_ptr = param.sched_priority;

  return (ret == 0) ? OS_OK : OS_ERR;
}

////////////////////////////////////////////////////////////////////////////////
// suspend/resume support

//  The low-level signal-based suspend/resume support is a remnant from the
//  old VM-suspension that used to be for java-suspension, safepoints etc,
//  within hotspot. Currently used by JFR's OSThreadSampler
//
//  The remaining code is greatly simplified from the more general suspension
//  code that used to be used.
//
//  The protocol is quite simple:
//  - suspend:
//      - sends a signal to the target thread
//      - polls the suspend state of the osthread using a yield loop
//      - target thread signal handler (SR_handler) sets suspend state
//        and blocks in sigsuspend until continued
//  - resume:
//      - sets target osthread state to continue
//      - sends signal to end the sigsuspend loop in the SR_handler
//
//  Note that the SR_lock plays no role in this suspend/resume protocol,
//  but is checked for NULL in SR_handler as a thread termination indicator.
//  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
//
//  Note that resume_clear_context() and suspend_save_context() are needed
//  by SR_handler(), so that fetch_frame_from_ucontext() works,
//  which in part is used by:
//    - Forte Analyzer: AsyncGetCallTrace()
//    - StackBanging: get_frame_at_stack_banging_point()

static void resume_clear_context(OSThread *osthread) {
  osthread->set_ucontext(NULL);
  osthread->set_siginfo(NULL);
}

static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  osthread->set_ucontext(context);
  osthread->set_siginfo(siginfo);
}

//
// Handler function invoked when a thread's execution is suspended or
// resumed. We have to be careful that only async-safe functions are
// called here (Note: most pthread functions are not async safe and
// should be avoided.)
//
// Note: sigwait() is a more natural fit than sigsuspend() from an
// interface point of view, but sigwait() prevents the signal hander
// from being run. libpthread would get very confused by not having
// its signal handlers run and prevents sigwait()'s use with the
// mutex granting granting signal.
//
// Currently only ever called on the VMThread and JavaThreads (PC sampling).
//
static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  // Save and restore errno to avoid confusing native code with EINTR
  // after sigsuspend.
  int old_errno = errno;

  Thread* thread = Thread::current_or_null_safe();
  assert(thread != NULL, "Missing current thread in SR_handler");

  // On some systems we have seen signal delivery get "stuck" until the signal
  // mask is changed as part of thread termination. Check that the current thread
  // has not already terminated (via SR_lock()) - else the following assertion
  // will fail because the thread is no longer a JavaThread as the ~JavaThread
  // destructor has completed.

  if (thread->SR_lock() == NULL) {
    return;
  }

  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");

  OSThread* osthread = thread->osthread();

  os::SuspendResume::State current = osthread->sr.state();
  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
    suspend_save_context(osthread, siginfo, context);

    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
    os::SuspendResume::State state = osthread->sr.suspended();
    if (state == os::SuspendResume::SR_SUSPENDED) {
      sigset_t suspend_set;  // signals for sigsuspend()
      sigemptyset(&suspend_set);
      // get current set of blocked signals and unblock resume signal
      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
      sigdelset(&suspend_set, SR_signum);

      // wait here until we are resumed
      while (1) {
        sigsuspend(&suspend_set);

        os::SuspendResume::State result = osthread->sr.running();
        if (result == os::SuspendResume::SR_RUNNING) {
          break;
        }
      }

    } else if (state == os::SuspendResume::SR_RUNNING) {
      // request was cancelled, continue
    } else {
      ShouldNotReachHere();
    }

    resume_clear_context(osthread);
  } else if (current == os::SuspendResume::SR_RUNNING) {
    // request was cancelled, continue
  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
    // ignore
  } else {
    ShouldNotReachHere();
  }

  errno = old_errno;
}

static int SR_initialize() {
  struct sigaction act;
  char *s;
  // Get signal number to use for suspend/resume
  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
    int sig = ::strtol(s, 0, 10);
    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
      SR_signum = sig;
    } else {
      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
    }
  }

  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");

  sigemptyset(&SR_sigset);
  sigaddset(&SR_sigset, SR_signum);

  // Set up signal handler for suspend/resume.
  act.sa_flags = SA_RESTART|SA_SIGINFO;
  act.sa_handler = (void (*)(int)) SR_handler;

  // SR_signum is blocked by default.
  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);

  if (sigaction(SR_signum, &act, 0) == -1) {
    return -1;
  }

  // Save signal flag
  os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
  return 0;
}

static int SR_finalize() {
  return 0;
}

static int sr_notify(OSThread* osthread) {
  int status = pthread_kill(osthread->pthread_id(), SR_signum);
  assert_status(status == 0, status, "pthread_kill");
  return status;
}

// "Randomly" selected value for how long we want to spin
// before bailing out on suspending a thread, also how often
// we send a signal to a thread we want to resume
static const int RANDOMLY_LARGE_INTEGER = 1000000;
static const int RANDOMLY_LARGE_INTEGER2 = 100;

// returns true on success and false on error - really an error is fatal
// but this seems the normal response to library errors
static bool do_suspend(OSThread* osthread) {
  assert(osthread->sr.is_running(), "thread should be running");
  // mark as suspended and send signal

  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
    // failed to switch, state wasn't running?
    ShouldNotReachHere();
    return false;
  }

  if (sr_notify(osthread) != 0) {
    // try to cancel, switch to running

    os::SuspendResume::State result = osthread->sr.cancel_suspend();
    if (result == os::SuspendResume::SR_RUNNING) {
      // cancelled
      return false;
    } else if (result == os::SuspendResume::SR_SUSPENDED) {
      // somehow managed to suspend
      return true;
    } else {
      ShouldNotReachHere();
      return false;
    }
  }

  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED

  for (int n = 0; !osthread->sr.is_suspended(); n++) {
    for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
      os::naked_yield();
    }

    // timeout, try to cancel the request
    if (n >= RANDOMLY_LARGE_INTEGER) {
      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
      if (cancelled == os::SuspendResume::SR_RUNNING) {
        return false;
      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
        return true;
      } else {
        ShouldNotReachHere();
        return false;
      }
    }
  }

  guarantee(osthread->sr.is_suspended(), "Must be suspended");
  return true;
}

static void do_resume(OSThread* osthread) {
  //assert(osthread->sr.is_suspended(), "thread should be suspended");

  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
    // failed to switch to WAKEUP_REQUEST
    ShouldNotReachHere();
    return;
  }

  while (!osthread->sr.is_running()) {
    if (sr_notify(osthread) == 0) {
      for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
        for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
          os::naked_yield();
        }
      }
    } else {
      ShouldNotReachHere();
    }
  }

  guarantee(osthread->sr.is_running(), "Must be running!");
}

///////////////////////////////////////////////////////////////////////////////////
// signal handling (except suspend/resume)

// This routine may be used by user applications as a "hook" to catch signals.
// The user-defined signal handler must pass unrecognized signals to this
// routine, and if it returns true (non-zero), then the signal handler must
// return immediately. If the flag "abort_if_unrecognized" is true, then this
// routine will never retun false (zero), but instead will execute a VM panic
// routine kill the process.
//
// If this routine returns false, it is OK to call it again. This allows
// the user-defined signal handler to perform checks either before or after
// the VM performs its own checks. Naturally, the user code would be making
// a serious error if it tried to handle an exception (such as a null check
// or breakpoint) that the VM was generating for its own correct operation.
//
// This routine may recognize any of the following kinds of signals:
//   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
// It should be consulted by handlers for any of those signals.
//
// The caller of this routine must pass in the three arguments supplied
// to the function referred to in the "sa_sigaction" (not the "sa_handler")
// field of the structure passed to sigaction(). This routine assumes that
// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
//
// Note that the VM will print warnings if it detects conflicting signal
// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
//
extern "C" JNIEXPORT int
JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);

// Set thread signal mask (for some reason on AIX sigthreadmask() seems
// to be the thing to call; documentation is not terribly clear about whether
// pthread_sigmask also works, and if it does, whether it does the same.
bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
  const int rc = ::pthread_sigmask(how, set, oset);
  // return value semantics differ slightly for error case:
  // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
  // (so, pthread_sigmask is more theadsafe for error handling)
  // But success is always 0.
  return rc == 0 ? true : false;
}

// Function to unblock all signals which are, according
// to POSIX, typical program error signals. If they happen while being blocked,
// they typically will bring down the process immediately.
bool unblock_program_error_signals() {
  sigset_t set;
  ::sigemptyset(&set);
  ::sigaddset(&set, SIGILL);
  ::sigaddset(&set, SIGBUS);
  ::sigaddset(&set, SIGFPE);
  ::sigaddset(&set, SIGSEGV);
  return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
}

// Renamed from 'signalHandler' to avoid collision with other shared libs.
static void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
  assert(info != NULL && uc != NULL, "it must be old kernel");

  // Never leave program error signals blocked;
  // on all our platforms they would bring down the process immediately when
  // getting raised while being blocked.
  unblock_program_error_signals();

  int orig_errno = errno;  // Preserve errno value over signal handler.
  JVM_handle_aix_signal(sig, info, uc, true);
  errno = orig_errno;
}

// This boolean allows users to forward their own non-matching signals
// to JVM_handle_aix_signal, harmlessly.
bool os::Aix::signal_handlers_are_installed = false;

// For signal-chaining
bool os::Aix::libjsig_is_loaded = false;
typedef struct sigaction *(*get_signal_t)(int);
get_signal_t os::Aix::get_signal_action = NULL;

struct sigaction* os::Aix::get_chained_signal_action(int sig) {
  struct sigaction *actp = NULL;

  if (libjsig_is_loaded) {
    // Retrieve the old signal handler from libjsig
    actp = (*get_signal_action)(sig);
  }
  if (actp == NULL) {
    // Retrieve the preinstalled signal handler from jvm
    actp = os::Posix::get_preinstalled_handler(sig);
  }

  return actp;
}

static bool call_chained_handler(struct sigaction *actp, int sig,
                                 siginfo_t *siginfo, void *context) {
  // Call the old signal handler
  if (actp->sa_handler == SIG_DFL) {
    // It's more reasonable to let jvm treat it as an unexpected exception
    // instead of taking the default action.
    return false;
  } else if (actp->sa_handler != SIG_IGN) {
    if ((actp->sa_flags & SA_NODEFER) == 0) {
      // automaticlly block the signal
      sigaddset(&(actp->sa_mask), sig);
    }

    sa_handler_t hand = NULL;
    sa_sigaction_t sa = NULL;
    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
    // retrieve the chained handler
    if (siginfo_flag_set) {
      sa = actp->sa_sigaction;
    } else {
      hand = actp->sa_handler;
    }

    if ((actp->sa_flags & SA_RESETHAND) != 0) {
      actp->sa_handler = SIG_DFL;
    }

    // try to honor the signal mask
    sigset_t oset;
    sigemptyset(&oset);
    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);

    // call into the chained handler
    if (siginfo_flag_set) {
      (*sa)(sig, siginfo, context);
    } else {
      (*hand)(sig);
    }

    // restore the signal mask
    pthread_sigmask(SIG_SETMASK, &oset, NULL);
  }
  // Tell jvm's signal handler the signal is taken care of.
  return true;
}

bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  bool chained = false;
  // signal-chaining
  if (UseSignalChaining) {
    struct sigaction *actp = get_chained_signal_action(sig);
    if (actp != NULL) {
      chained = call_chained_handler(actp, sig, siginfo, context);
    }
  }
  return chained;
}

// for diagnostic
int sigflags[NSIG];

int os::Aix::get_our_sigflags(int sig) {
  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
  return sigflags[sig];
}

void os::Aix::set_our_sigflags(int sig, int flags) {
  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
  if (sig > 0 && sig < NSIG) {
    sigflags[sig] = flags;
  }
}

void os::Aix::set_signal_handler(int sig, bool set_installed) {
  // Check for overwrite.
  struct sigaction oldAct;
  sigaction(sig, (struct sigaction*)NULL, &oldAct);

  void* oldhand = oldAct.sa_sigaction
    ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
    : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
    if (AllowUserSignalHandlers || !set_installed) {
      // Do not overwrite; user takes responsibility to forward to us.
      return;
    } else if (UseSignalChaining) {
      // save the old handler in jvm
      os::Posix::save_preinstalled_handler(sig, oldAct);
      // libjsig also interposes the sigaction() call below and saves the
      // old sigaction on it own.
    } else {
      fatal("Encountered unexpected pre-existing sigaction handler "
            "%#lx for signal %d.", (long)oldhand, sig);
    }
  }

  struct sigaction sigAct;
  sigfillset(&(sigAct.sa_mask));
  if (!set_installed) {
    sigAct.sa_handler = SIG_DFL;
    sigAct.sa_flags = SA_RESTART;
  } else {
    sigAct.sa_sigaction = javaSignalHandler;
    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  }
  // Save flags, which are set by ours
  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
  sigflags[sig] = sigAct.sa_flags;

  int ret = sigaction(sig, &sigAct, &oldAct);
  assert(ret == 0, "check");

  void* oldhand2 = oldAct.sa_sigaction
                 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
                 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
}

// install signal handlers for signals that HotSpot needs to
// handle in order to support Java-level exception handling.
void os::Aix::install_signal_handlers() {
  if (!signal_handlers_are_installed) {
    signal_handlers_are_installed = true;

    // signal-chaining
    typedef void (*signal_setting_t)();
    signal_setting_t begin_signal_setting = NULL;
    signal_setting_t end_signal_setting = NULL;
    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
    if (begin_signal_setting != NULL) {
      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
      libjsig_is_loaded = true;
      assert(UseSignalChaining, "should enable signal-chaining");
    }
    if (libjsig_is_loaded) {
      // Tell libjsig jvm is setting signal handlers.
      (*begin_signal_setting)();
    }

    set_signal_handler(SIGSEGV, true);
    set_signal_handler(SIGPIPE, true);
    set_signal_handler(SIGBUS, true);
    set_signal_handler(SIGILL, true);
    set_signal_handler(SIGFPE, true);
    set_signal_handler(SIGTRAP, true);
    set_signal_handler(SIGXFSZ, true);

    if (libjsig_is_loaded) {
      // Tell libjsig jvm finishes setting signal handlers.
      (*end_signal_setting)();
    }

    // We don't activate signal checker if libjsig is in place, we trust ourselves
    // and if UserSignalHandler is installed all bets are off.
    // Log that signal checking is off only if -verbose:jni is specified.
    if (CheckJNICalls) {
      if (libjsig_is_loaded) {
        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
        check_signals = false;
      }
      if (AllowUserSignalHandlers) {
        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
        check_signals = false;
      }
      // Need to initialize check_signal_done.
      ::sigemptyset(&check_signal_done);
    }
  }
}

static const char* get_signal_handler_name(address handler,
                                           char* buf, int buflen) {
  int offset;
  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  if (found) {
    // skip directory names
    const char *p1, *p2;
    p1 = buf;
    size_t len = strlen(os::file_separator());
    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
    // The way os::dll_address_to_library_name is implemented on Aix
    // right now, it always returns -1 for the offset which is not
    // terribly informative.
    // Will fix that. For now, omit the offset.
    jio_snprintf(buf, buflen, "%s", p1);
  } else {
    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  }
  return buf;
}

static void print_signal_handler(outputStream* st, int sig,
                                 char* buf, size_t buflen) {
  struct sigaction sa;
  sigaction(sig, NULL, &sa);

  st->print("%s: ", os::exception_name(sig, buf, buflen));

  address handler = (sa.sa_flags & SA_SIGINFO)
    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
    : CAST_FROM_FN_PTR(address, sa.sa_handler);

  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
    st->print("SIG_DFL");
  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
    st->print("SIG_IGN");
  } else {
    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  }

  // Print readable mask.
  st->print(", sa_mask[0]=");
  os::Posix::print_signal_set_short(st, &sa.sa_mask);

  address rh = VMError::get_resetted_sighandler(sig);
  // May be, handler was resetted by VMError?
  if (rh != NULL) {
    handler = rh;
    sa.sa_flags = VMError::get_resetted_sigflags(sig);
  }

  // Print textual representation of sa_flags.
  st->print(", sa_flags=");
  os::Posix::print_sa_flags(st, sa.sa_flags);

  // Check: is it our handler?
  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
    // It is our signal handler.
    // Check for flags, reset system-used one!
    if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
      st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
                os::Aix::get_our_sigflags(sig));
    }
  }
  st->cr();
}

#define DO_SIGNAL_CHECK(sig) \
  if (!sigismember(&check_signal_done, sig)) \
    os::Aix::check_signal_handler(sig)

// This method is a periodic task to check for misbehaving JNI applications
// under CheckJNI, we can add any periodic checks here

void os::run_periodic_checks() {

  if (check_signals == false) return;

  // SEGV and BUS if overridden could potentially prevent
  // generation of hs*.log in the event of a crash, debugging
  // such a case can be very challenging, so we absolutely
  // check the following for a good measure:
  DO_SIGNAL_CHECK(SIGSEGV);
  DO_SIGNAL_CHECK(SIGILL);
  DO_SIGNAL_CHECK(SIGFPE);
  DO_SIGNAL_CHECK(SIGBUS);
  DO_SIGNAL_CHECK(SIGPIPE);
  DO_SIGNAL_CHECK(SIGXFSZ);
  if (UseSIGTRAP) {
    DO_SIGNAL_CHECK(SIGTRAP);
  }

  // ReduceSignalUsage allows the user to override these handlers
  // see comments at the very top and jvm_md.h
  if (!ReduceSignalUsage) {
    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
    DO_SIGNAL_CHECK(BREAK_SIGNAL);
  }

  DO_SIGNAL_CHECK(SR_signum);
}

typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);

static os_sigaction_t os_sigaction = NULL;

void os::Aix::check_signal_handler(int sig) {
  char buf[O_BUFLEN];
  address jvmHandler = NULL;

  struct sigaction act;
  if (os_sigaction == NULL) {
    // only trust the default sigaction, in case it has been interposed
    os_sigaction = CAST_TO_FN_PTR(os_sigaction_t, dlsym(RTLD_DEFAULT, "sigaction"));
    if (os_sigaction == NULL) return;
  }

  os_sigaction(sig, (struct sigaction*)NULL, &act);

  address thisHandler = (act.sa_flags & SA_SIGINFO)
    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
    : CAST_FROM_FN_PTR(address, act.sa_handler);

  switch(sig) {
  case SIGSEGV:
  case SIGBUS:
  case SIGFPE:
  case SIGPIPE:
  case SIGILL:
  case SIGXFSZ:
    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
    break;

  case SHUTDOWN1_SIGNAL:
  case SHUTDOWN2_SIGNAL:
  case SHUTDOWN3_SIGNAL:
  case BREAK_SIGNAL:
    jvmHandler = (address)user_handler();
    break;

  default:
    if (sig == SR_signum) {
      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
    } else {
      return;
    }
    break;
  }

  if (thisHandler != jvmHandler) {
    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
    // No need to check this sig any longer
    sigaddset(&check_signal_done, sig);
    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
                    exception_name(sig, buf, O_BUFLEN));
    }
  } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
    tty->print("expected:");
    os::Posix::print_sa_flags(tty, os::Aix::get_our_sigflags(sig));
    tty->cr();
    tty->print("  found:");
    os::Posix::print_sa_flags(tty, act.sa_flags);
    tty->cr();
    // No need to check this sig any longer
    sigaddset(&check_signal_done, sig);
  }

  // Dump all the signal
  if (sigismember(&check_signal_done, sig)) {
    print_signal_handlers(tty, buf, O_BUFLEN);
  }
}

// To install functions for atexit system call
extern "C" {
  static void perfMemory_exit_helper() {
    perfMemory_exit();
  }
}

// This is called _before_ the most of global arguments have been parsed.
void os::init(void) {
  // This is basic, we want to know if that ever changes.
  // (Shared memory boundary is supposed to be a 256M aligned.)
  assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");

  // Record process break at startup.
  g_brk_at_startup = (address) ::sbrk(0);
  assert(g_brk_at_startup != (address) -1, "sbrk failed");

  // First off, we need to know whether we run on AIX or PASE, and
  // the OS level we run on.
  os::Aix::initialize_os_info();

  // Scan environment (SPEC1170 behaviour, etc).
  os::Aix::scan_environment();

  // Probe multipage support.
  query_multipage_support();

  // Act like we only have one page size by eliminating corner cases which
  // we did not support very well anyway.
  // We have two input conditions:
  // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
  //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
  //    setting.
  //    Data segment page size is important for us because it defines the thread stack page
  //    size, which is needed for guard page handling, stack banging etc.
  // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
  //    and should be allocated with 64k pages.
  //
  // So, we do the following:
  // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
  // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
  // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
  // 64k          no              --- AIX 5.2 ? ---
  // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)

  // We explicitly leave no option to change page size, because only upgrading would work,
  // not downgrading (if stack page size is 64k you cannot pretend its 4k).

  if (g_multipage_support.datapsize == 4*K) {
    // datapsize = 4K. Data segment, thread stacks are 4K paged.
    if (g_multipage_support.can_use_64K_pages) {
      // .. but we are able to use 64K pages dynamically.
      // This would be typical for java launchers which are not linked
      // with datapsize=64K (like, any other launcher but our own).
      //
      // In this case it would be smart to allocate the java heap with 64K
      // to get the performance benefit, and to fake 64k pages for the
      // data segment (when dealing with thread stacks).
      //
      // However, leave a possibility to downgrade to 4K, using
      // -XX:-Use64KPages.
      if (Use64KPages) {
        trcVerbose("64K page mode (faked for data segment)");
        Aix::_page_size = 64*K;
      } else {
        trcVerbose("4K page mode (Use64KPages=off)");
        Aix::_page_size = 4*K;
      }
    } else {
      // .. and not able to allocate 64k pages dynamically. Here, just
      // fall back to 4K paged mode and use mmap for everything.
      trcVerbose("4K page mode");
      Aix::_page_size = 4*K;
      FLAG_SET_ERGO(Use64KPages, false);
    }
  } else {
    // datapsize = 64k. Data segment, thread stacks are 64k paged.
    // This normally means that we can allocate 64k pages dynamically.
    // (There is one special case where this may be false: EXTSHM=on.
    // but we decided to not support that mode).
    assert0(g_multipage_support.can_use_64K_pages);
    Aix::_page_size = 64*K;
    trcVerbose("64K page mode");
    FLAG_SET_ERGO(Use64KPages, true);
  }

  // For now UseLargePages is just ignored.
  FLAG_SET_ERGO(UseLargePages, false);
  _page_sizes[0] = 0;

  // debug trace
  trcVerbose("os::vm_page_size %s", describe_pagesize(os::vm_page_size()));

  // Next, we need to initialize libo4 and libperfstat libraries.
  if (os::Aix::on_pase()) {
    os::Aix::initialize_libo4();
  } else {
    os::Aix::initialize_libperfstat();
  }

  // Reset the perfstat information provided by ODM.
  if (os::Aix::on_aix()) {
    libperfstat::perfstat_reset();
  }

  // Now initialze basic system properties. Note that for some of the values we
  // need libperfstat etc.
  os::Aix::initialize_system_info();

  clock_tics_per_sec = sysconf(_SC_CLK_TCK);

  init_random(1234567);

  // _main_thread points to the thread that created/loaded the JVM.
  Aix::_main_thread = pthread_self();

  initial_time_count = javaTimeNanos();

  os::Posix::init();
}

// This is called _after_ the global arguments have been parsed.
jint os::init_2(void) {

  // This could be set after os::Posix::init() but all platforms
  // have to set it the same so we have to mirror Solaris.
  DEBUG_ONLY(os::set_mutex_init_done();)

  os::Posix::init_2();

  if (os::Aix::on_pase()) {
    trcVerbose("Running on PASE.");
  } else {
    trcVerbose("Running on AIX (not PASE).");
  }

  trcVerbose("processor count: %d", os::_processor_count);
  trcVerbose("physical memory: %lu", Aix::_physical_memory);

  // Initially build up the loaded dll map.
  LoadedLibraries::reload();
  if (Verbose) {
    trcVerbose("Loaded Libraries: ");
    LoadedLibraries::print(tty);
  }

  // initialize suspend/resume support - must do this before signal_sets_init()
  if (SR_initialize() != 0) {
    perror("SR_initialize failed");
    return JNI_ERR;
  }

  Aix::signal_sets_init();
  Aix::install_signal_handlers();
  // Initialize data for jdk.internal.misc.Signal
  if (!ReduceSignalUsage) {
    jdk_misc_signal_init();
  }

  // Check and sets minimum stack sizes against command line options
  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
    return JNI_ERR;
  }

  if (UseNUMA) {
    UseNUMA = false;
    warning("NUMA optimizations are not available on this OS.");
  }

  if (MaxFDLimit) {
    // Set the number of file descriptors to max. print out error
    // if getrlimit/setrlimit fails but continue regardless.
    struct rlimit nbr_files;
    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
    if (status != 0) {
      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
    } else {
      nbr_files.rlim_cur = nbr_files.rlim_max;
      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
      if (status != 0) {
        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
      }
    }
  }

  if (PerfAllowAtExitRegistration) {
    // Only register atexit functions if PerfAllowAtExitRegistration is set.
    // At exit functions can be delayed until process exit time, which
    // can be problematic for embedded VM situations. Embedded VMs should
    // call DestroyJavaVM() to assure that VM resources are released.

    // Note: perfMemory_exit_helper atexit function may be removed in
    // the future if the appropriate cleanup code can be added to the
    // VM_Exit VMOperation's doit method.
    if (atexit(perfMemory_exit_helper) != 0) {
      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
    }
  }

  // initialize thread priority policy
  prio_init();

  return JNI_OK;
}

// Mark the polling page as unreadable
void os::make_polling_page_unreadable(void) {
  if (!guard_memory((char*)_polling_page, Aix::page_size())) {
    fatal("Could not disable polling page");
  }
};

// Mark the polling page as readable
void os::make_polling_page_readable(void) {
  // Changed according to os_linux.cpp.
  if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
    fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
  }
};

int os::active_processor_count() {
  // User has overridden the number of active processors
  if (ActiveProcessorCount > 0) {
    log_trace(os)("active_processor_count: "
                  "active processor count set by user : %d",
                  ActiveProcessorCount);
    return ActiveProcessorCount;
  }

  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  return online_cpus;
}

void os::set_native_thread_name(const char *name) {
  // Not yet implemented.
  return;
}

bool os::bind_to_processor(uint processor_id) {
  // Not yet implemented.
  return false;
}

void os::SuspendedThreadTask::internal_do_task() {
  if (do_suspend(_thread->osthread())) {
    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
    do_task(context);
    do_resume(_thread->osthread());
  }
}

////////////////////////////////////////////////////////////////////////////////
// debug support

bool os::find(address addr, outputStream* st) {

  st->print(PTR_FORMAT ": ", addr);

  loaded_module_t lm;
  if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL ||
      LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
    st->print_cr("%s", lm.path);
    return true;
  }

  return false;
}

////////////////////////////////////////////////////////////////////////////////
// misc

// This does not do anything on Aix. This is basically a hook for being
// able to use structured exception handling (thread-local exception filters)
// on, e.g., Win32.
void
os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
                         JavaCallArguments* args, Thread* thread) {
  f(value, method, args, thread);
}

void os::print_statistics() {
}

bool os::message_box(const char* title, const char* message) {
  int i;
  fdStream err(defaultStream::error_fd());
  for (i = 0; i < 78; i++) err.print_raw("=");
  err.cr();
  err.print_raw_cr(title);
  for (i = 0; i < 78; i++) err.print_raw("-");
  err.cr();
  err.print_raw_cr(message);
  for (i = 0; i < 78; i++) err.print_raw("=");
  err.cr();

  char buf[16];
  // Prevent process from exiting upon "read error" without consuming all CPU
  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }

  return buf[0] == 'y' || buf[0] == 'Y';
}

// Is a (classpath) directory empty?
bool os::dir_is_empty(const char* path) {
  DIR *dir = NULL;
  struct dirent *ptr;

  dir = opendir(path);
  if (dir == NULL) return true;

  /* Scan the directory */
  bool result = true;
  while (result && (ptr = readdir(dir)) != NULL) {
    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
      result = false;
    }
  }
  closedir(dir);
  return result;
}

// This code originates from JDK's sysOpen and open64_w
// from src/solaris/hpi/src/system_md.c

int os::open(const char *path, int oflag, int mode) {

  if (strlen(path) > MAX_PATH - 1) {
    errno = ENAMETOOLONG;
    return -1;
  }
  int fd;

  fd = ::open64(path, oflag, mode);
  if (fd == -1) return -1;

  // If the open succeeded, the file might still be a directory.
  {
    struct stat64 buf64;
    int ret = ::fstat64(fd, &buf64);
    int st_mode = buf64.st_mode;

    if (ret != -1) {
      if ((st_mode & S_IFMT) == S_IFDIR) {
        errno = EISDIR;
        ::close(fd);
        return -1;
      }
    } else {
      ::close(fd);
      return -1;
    }
  }

  // All file descriptors that are opened in the JVM and not
  // specifically destined for a subprocess should have the
  // close-on-exec flag set. If we don't set it, then careless 3rd
  // party native code might fork and exec without closing all
  // appropriate file descriptors (e.g. as we do in closeDescriptors in
  // UNIXProcess.c), and this in turn might:
  //
  // - cause end-of-file to fail to be detected on some file
  //   descriptors, resulting in mysterious hangs, or
  //
  // - might cause an fopen in the subprocess to fail on a system
  //   suffering from bug 1085341.
  //
  // (Yes, the default setting of the close-on-exec flag is a Unix
  // design flaw.)
  //
  // See:
  // 1085341: 32-bit stdio routines should support file descriptors >255
  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
#ifdef FD_CLOEXEC
  {
    int flags = ::fcntl(fd, F_GETFD);
    if (flags != -1)
      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  }
#endif

  return fd;
}

// create binary file, rewriting existing file if required
int os::create_binary_file(const char* path, bool rewrite_existing) {
  int oflags = O_WRONLY | O_CREAT;
  if (!rewrite_existing) {
    oflags |= O_EXCL;
  }
  return ::open64(path, oflags, S_IREAD | S_IWRITE);
}

// return current position of file pointer
jlong os::current_file_offset(int fd) {
  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
}

// move file pointer to the specified offset
jlong os::seek_to_file_offset(int fd, jlong offset) {
  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
}

// This code originates from JDK's sysAvailable
// from src/solaris/hpi/src/native_threads/src/sys_api_td.c

int os::available(int fd, jlong *bytes) {
  jlong cur, end;
  int mode;
  struct stat64 buf64;

  if (::fstat64(fd, &buf64) >= 0) {
    mode = buf64.st_mode;
    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
      int n;
      if (::ioctl(fd, FIONREAD, &n) >= 0) {
        *bytes = n;
        return 1;
      }
    }
  }
  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
    return 0;
  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
    return 0;
  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
    return 0;
  }
  *bytes = end - cur;
  return 1;
}

// Map a block of memory.
char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
                        char *addr, size_t bytes, bool read_only,
                        bool allow_exec) {
  int prot;
  int flags = MAP_PRIVATE;

  if (read_only) {
    prot = PROT_READ;
    flags = MAP_SHARED;
  } else {
    prot = PROT_READ | PROT_WRITE;
    flags = MAP_PRIVATE;
  }

  if (allow_exec) {
    prot |= PROT_EXEC;
  }

  if (addr != NULL) {
    flags |= MAP_FIXED;
  }

  // Allow anonymous mappings if 'fd' is -1.
  if (fd == -1) {
    flags |= MAP_ANONYMOUS;
  }

  char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
                                     fd, file_offset);
  if (mapped_address == MAP_FAILED) {
    return NULL;
  }
  return mapped_address;
}

// Remap a block of memory.
char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
                          char *addr, size_t bytes, bool read_only,
                          bool allow_exec) {
  // same as map_memory() on this OS
  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
                        allow_exec);
}

// Unmap a block of memory.
bool os::pd_unmap_memory(char* addr, size_t bytes) {
  return munmap(addr, bytes) == 0;
}

// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
// are used by JVM M&M and JVMTI to get user+sys or user CPU time
// of a thread.
//
// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
// the fast estimate available on the platform.

jlong os::current_thread_cpu_time() {
  // return user + sys since the cost is the same
  const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
  assert(n >= 0, "negative CPU time");
  return n;
}

jlong os::thread_cpu_time(Thread* thread) {
  // consistent with what current_thread_cpu_time() returns
  const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
  assert(n >= 0, "negative CPU time");
  return n;
}

jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  assert(n >= 0, "negative CPU time");
  return n;
}


/**代码未完, 请加载全部代码(NowJava.com).**/
展开阅读全文

关注时代Java

关注时代Java