/*
* Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "code/vtableStubs.hpp"
#include "interp_masm_x86.hpp"
#include "memory/resourceArea.hpp"
#include "oops/compiledICHolder.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klassVtable.hpp"
#include "runtime/sharedRuntime.hpp"
#include "vmreg_x86.inline.hpp"
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
// machine-dependent part of VtableStubs: create VtableStub of correct size and
// initialize its code
#define __ masm->
#ifndef PRODUCT
extern "C" void bad_compiled_vtable_index(JavaThread* thread, oop receiver, int index);
#endif
VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
// Read "A word on VtableStub sizing" in share/code/vtableStubs.hpp for details on stub sizing.
const int stub_code_length = code_size_limit(true);
VtableStub* s = new(stub_code_length) VtableStub(true, vtable_index);
// Can be NULL if there is no free space in the code cache.
if (s == NULL) {
return NULL;
}
// Count unused bytes in instruction sequences of variable size.
// We add them to the computed buffer size in order to avoid
// overflow in subsequently generated stubs.
address start_pc;
int slop_bytes = 0;
int slop_delta = 0;
// No variance was detected in vtable stub sizes. Setting index_dependent_slop == 0 will unveil any deviation from this observation.
const int index_dependent_slop = 0;
ResourceMark rm;
CodeBuffer cb(s->entry_point(), stub_code_length);
MacroAssembler* masm = new MacroAssembler(&cb);
#if (!defined(PRODUCT) && defined(COMPILER2))
if (CountCompiledCalls) {
__ incrementl(ExternalAddress((address) SharedRuntime::nof_megamorphic_calls_addr()));
}
#endif
// get receiver (need to skip return address on top of stack)
assert(VtableStub::receiver_location() == j_rarg0->as_VMReg(), "receiver expected in j_rarg0");
// Free registers (non-args) are rax, rbx
// get receiver klass
address npe_addr = __ pc();
__ load_klass(rax, j_rarg0);
#ifndef PRODUCT
if (DebugVtables) {
Label L;
start_pc = __ pc();
// check offset vs vtable length
__ cmpl(Address(rax, Klass::vtable_length_offset()), vtable_index*vtableEntry::size());
slop_delta = 12 - (__ pc() - start_pc); // cmpl varies in length, depending on data
slop_bytes += slop_delta;
assert(slop_delta >= 0, "negative slop(%d) encountered, adjust code size estimate!", slop_delta);
__ jcc(Assembler::greater, L);
__ movl(rbx, vtable_index);
// VTABLE TODO: find upper bound for call_VM length.
start_pc = __ pc();
__ call_VM(noreg, CAST_FROM_FN_PTR(address, bad_compiled_vtable_index), j_rarg0, rbx);
slop_delta = 480 - (__ pc() - start_pc);
slop_bytes += slop_delta;
assert(slop_delta >= 0, "negative slop(%d) encountered, adjust code size estimate!", slop_delta);
__ bind(L);
}
#endif // PRODUCT
const Register method = rbx;
// load Method* and target address
start_pc = __ pc();
__ lookup_virtual_method(rax, vtable_index, method);
slop_delta = 8 - (int)(__ pc() - start_pc);
slop_bytes += slop_delta;
assert(slop_delta >= 0, "negative slop(%d) encountered, adjust code size estimate!", slop_delta);
#ifndef PRODUCT
if (DebugVtables) {
Label L;
__ cmpptr(method, (int32_t)NULL_WORD);
__ jcc(Assembler::equal, L);
__ cmpptr(Address(method, Method::from_compiled_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::notZero, L);
__ stop("Vtable entry is NULL");
__ bind(L);
}
#endif // PRODUCT
// rax: receiver klass
// method (rbx): Method*
// rcx: receiver
address ame_addr = __ pc();
__ jmp( Address(rbx, Method::from_compiled_offset()));
masm->flush();
slop_bytes += index_dependent_slop; // add'l slop for size variance due to large itable offsets
bookkeeping(masm, tty, s, npe_addr, ame_addr, true, vtable_index, slop_bytes, index_dependent_slop);
return s;
}
VtableStub* VtableStubs::create_itable_stub(int itable_index) {
// Read "A word on VtableStub sizing" in share/code/vtableStubs.hpp for details on stub sizing.
const int stub_code_length = code_size_limit(false);
VtableStub* s = new(stub_code_length) VtableStub(false, itable_index);
// Can be NULL if there is no free space in the code cache.
if (s == NULL) {
return NULL;
}
// Count unused bytes in instruction sequences of variable size.
// We add them to the computed buffer size in order to avoid
// overflow in subsequently generated stubs.
address start_pc;
int slop_bytes = 0;
int slop_delta = 0;
const int index_dependent_slop = (itable_index == 0) ? 4 : // code size change with transition from 8-bit to 32-bit constant (@index == 16).
(itable_index < 16) ? 3 : 0; // index == 0 generates even shorter code.
ResourceMark rm;
CodeBuffer cb(s->entry_point(), stub_code_length);
MacroAssembler *masm = new MacroAssembler(&cb);
#if (!defined(PRODUCT) && defined(COMPILER2))
if (CountCompiledCalls) {
__ incrementl(ExternalAddress((address) SharedRuntime::nof_megamorphic_calls_addr()));
}
#endif // PRODUCT
// Entry arguments:
// rax: CompiledICHolder
// j_rarg0: Receiver
// Most registers are in use; we'll use rax, rbx, r10, r11
// (various calling sequences use r[cd]x, r[sd]i, r[89]; stay away from them)
const Register recv_klass_reg = r10;
const Register holder_klass_reg = rax; // declaring interface klass (DECC)
const Register resolved_klass_reg = rbx; // resolved interface klass (REFC)
const Register temp_reg = r11;
const Register icholder_reg = rax;
__ movptr(resolved_klass_reg, Address(icholder_reg, CompiledICHolder::holder_klass_offset()));
__ movptr(holder_klass_reg, Address(icholder_reg, CompiledICHolder::holder_metadata_offset()));
Label L_no_such_interface;
// get receiver klass (also an implicit null-check)
assert(VtableStub::receiver_location() == j_rarg0->as_VMReg(), "receiver expected in j_rarg0");
address npe_addr = __ pc();
__ load_klass(recv_klass_reg, j_rarg0);
start_pc = __ pc();
// Receiver subtype check against REFC.
// Destroys recv_klass_reg value.
__ lookup_interface_method(// inputs: rec. class, interface
recv_klass_reg, resolved_klass_reg, noreg,
// outputs: scan temp. reg1, scan temp. reg2
recv_klass_reg, temp_reg,
L_no_such_interface,
/*return_method=*/false);
const ptrdiff_t typecheckSize = __ pc() - start_pc;
start_pc = __ pc();
// Get selected method from declaring class and itable index
const Register method = rbx;
__ load_klass(recv_klass_reg, j_rarg0); // restore recv_klass_reg
__ lookup_interface_method(// inputs: rec. class, interface, itable index
recv_klass_reg, holder_klass_reg, itable_index,
// outputs: method, scan temp. reg
method, temp_reg,
L_no_such_interface);
const ptrdiff_t lookupSize = __ pc() - start_pc;
// We expect we need index_dependent_slop extra bytes. Reason:
// The emitted code in lookup_interface_method changes when itable_index exceeds 15.
// For linux, a very narrow estimate would be 112, but Solaris requires some more space (130).
const ptrdiff_t estimate = 136;
const ptrdiff_t codesize = typecheckSize + lookupSize + index_dependent_slop;
slop_delta = (int)(estimate - codesize);
slop_bytes += slop_delta;
assert(slop_delta >= 0, "itable #%d: Code size estimate (%d) for lookup_interface_method too small, required: %d", itable_index, (int)estimate, (int)codesize);
// If we take a trap while this arg is on the stack we will not
// be able to walk the stack properly. This is not an issue except
// when there are mistakes in this assembly code that could generate
// a spurious fault. Ask me how I know...
// method (rbx): Method*
// j_rarg0: receiver
#ifdef ASSERT
if (DebugVtables) {
Label L2;
__ cmpptr(method, (int32_t)NULL_WORD);
__ jcc(Assembler::equal, L2);
/**代码未完, 请加载全部代码(NowJava.com).**/