/*
* Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "code/debugInfoRec.hpp"
#include "code/icBuffer.hpp"
#include "code/nativeInst.hpp"
#include "code/vtableStubs.hpp"
#include "gc/shared/gcLocker.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "logging/log.hpp"
#include "memory/resourceArea.hpp"
#include "oops/compiledICHolder.hpp"
#include "oops/klass.inline.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/vframeArray.hpp"
#include "runtime/vm_version.hpp"
#include "utilities/align.hpp"
#include "vmreg_x86.inline.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
#define __ masm->
const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
class RegisterSaver {
// Capture info about frame layout
#define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
enum layout {
fpu_state_off = 0,
fpu_state_end = fpu_state_off+FPUStateSizeInWords,
st0_off, st0H_off,
st1_off, st1H_off,
st2_off, st2H_off,
st3_off, st3H_off,
st4_off, st4H_off,
st5_off, st5H_off,
st6_off, st6H_off,
st7_off, st7H_off,
xmm_off,
DEF_XMM_OFFS(0),
DEF_XMM_OFFS(1),
DEF_XMM_OFFS(2),
DEF_XMM_OFFS(3),
DEF_XMM_OFFS(4),
DEF_XMM_OFFS(5),
DEF_XMM_OFFS(6),
DEF_XMM_OFFS(7),
flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
rdi_off,
rsi_off,
ignore_off, // extra copy of rbp,
rsp_off,
rbx_off,
rdx_off,
rcx_off,
rax_off,
// The frame sender code expects that rbp will be in the "natural" place and
// will override any oopMap setting for it. We must therefore force the layout
// so that it agrees with the frame sender code.
rbp_off,
return_off, // slot for return address
reg_save_size };
enum { FPU_regs_live = flags_off - fpu_state_end };
public:
static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
static int rax_offset() { return rax_off; }
static int rbx_offset() { return rbx_off; }
// Offsets into the register save area
// Used by deoptimization when it is managing result register
// values on its own
static int raxOffset(void) { return rax_off; }
static int rdxOffset(void) { return rdx_off; }
static int rbxOffset(void) { return rbx_off; }
static int xmm0Offset(void) { return xmm0_off; }
// This really returns a slot in the fp save area, which one is not important
static int fpResultOffset(void) { return st0_off; }
// During deoptimization only the result register need to be restored
// all the other values have already been extracted.
static void restore_result_registers(MacroAssembler* masm);
};
OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
int* total_frame_words, bool verify_fpu, bool save_vectors) {
int num_xmm_regs = XMMRegisterImpl::number_of_registers;
int ymm_bytes = num_xmm_regs * 16;
int zmm_bytes = num_xmm_regs * 32;
#ifdef COMPILER2
if (save_vectors) {
assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
// Save upper half of YMM registers
int vect_bytes = ymm_bytes;
if (UseAVX > 2) {
// Save upper half of ZMM registers as well
vect_bytes += zmm_bytes;
}
additional_frame_words += vect_bytes / wordSize;
}
#else
assert(!save_vectors, "vectors are generated only by C2");
#endif
int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
int frame_words = frame_size_in_bytes / wordSize;
*total_frame_words = frame_words;
assert(FPUStateSizeInWords == 27, "update stack layout");
// save registers, fpu state, and flags
// We assume caller has already has return address slot on the stack
// We push epb twice in this sequence because we want the real rbp,
// to be under the return like a normal enter and we want to use pusha
// We push by hand instead of using push.
__ enter();
__ pusha();
__ pushf();
__ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
__ push_FPU_state(); // Save FPU state & init
if (verify_fpu) {
// Some stubs may have non standard FPU control word settings so
// only check and reset the value when it required to be the
// standard value. The safepoint blob in particular can be used
// in methods which are using the 24 bit control word for
// optimized float math.
#ifdef ASSERT
// Make sure the control word has the expected value
Label ok;
__ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
__ jccb(Assembler::equal, ok);
__ stop("corrupted control word detected");
__ bind(ok);
#endif
// Reset the control word to guard against exceptions being unmasked
// since fstp_d can cause FPU stack underflow exceptions. Write it
// into the on stack copy and then reload that to make sure that the
// current and future values are correct.
__ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
}
__ frstor(Address(rsp, 0));
if (!verify_fpu) {
// Set the control word so that exceptions are masked for the
// following code.
__ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
}
int off = st0_off;
int delta = st1_off - off;
// Save the FPU registers in de-opt-able form
for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
__ fstp_d(Address(rsp, off*wordSize));
off += delta;
}
off = xmm0_off;
delta = xmm1_off - off;
if(UseSSE == 1) {
// Save the XMM state
for (int n = 0; n < num_xmm_regs; n++) {
__ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
off += delta;
}
} else if(UseSSE >= 2) {
// Save whole 128bit (16 bytes) XMM registers
for (int n = 0; n < num_xmm_regs; n++) {
__ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
off += delta;
}
}
if (save_vectors) {
__ subptr(rsp, ymm_bytes);
// Save upper half of YMM registers
for (int n = 0; n < num_xmm_regs; n++) {
__ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
}
if (UseAVX > 2) {
__ subptr(rsp, zmm_bytes);
// Save upper half of ZMM registers
for (int n = 0; n < num_xmm_regs; n++) {
__ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
}
}
}
__ vzeroupper();
// Set an oopmap for the call site. This oopmap will map all
// oop-registers and debug-info registers as callee-saved. This
// will allow deoptimization at this safepoint to find all possible
// debug-info recordings, as well as let GC find all oops.
OopMapSet *oop_maps = new OopMapSet();
OopMap* map = new OopMap( frame_words, 0 );
#define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
#define NEXTREG(x) (x)->as_VMReg()->next()
map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
// rbp, location is known implicitly, no oopMap
map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
// %%% This is really a waste but we'll keep things as they were for now for the upper component
off = st0_off;
delta = st1_off - off;
for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
FloatRegister freg_name = as_FloatRegister(n);
map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
off += delta;
}
off = xmm0_off;
delta = xmm1_off - off;
for (int n = 0; n < num_xmm_regs; n++) {
XMMRegister xmm_name = as_XMMRegister(n);
map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
off += delta;
}
#undef NEXTREG
#undef STACK_OFFSET
return map;
}
void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
int num_xmm_regs = XMMRegisterImpl::number_of_registers;
int ymm_bytes = num_xmm_regs * 16;
int zmm_bytes = num_xmm_regs * 32;
// Recover XMM & FPU state
int additional_frame_bytes = 0;
#ifdef COMPILER2
if (restore_vectors) {
assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
// Save upper half of YMM registers
additional_frame_bytes = ymm_bytes;
if (UseAVX > 2) {
// Save upper half of ZMM registers as well
additional_frame_bytes += zmm_bytes;
}
}
#else
assert(!restore_vectors, "vectors are generated only by C2");
#endif
int off = xmm0_off;
int delta = xmm1_off - off;
__ vzeroupper();
if (UseSSE == 1) {
// Restore XMM registers
assert(additional_frame_bytes == 0, "");
for (int n = 0; n < num_xmm_regs; n++) {
__ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
off += delta;
}
} else if (UseSSE >= 2) {
// Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
// ZMM because the movdqu instruction zeros the upper part of the XMM register.
for (int n = 0; n < num_xmm_regs; n++) {
__ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
off += delta;
}
}
if (restore_vectors) {
if (UseAVX > 2) {
// Restore upper half of ZMM registers.
for (int n = 0; n < num_xmm_regs; n++) {
__ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32));
}
__ addptr(rsp, zmm_bytes);
}
// Restore upper half of YMM registers.
for (int n = 0; n < num_xmm_regs; n++) {
__ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16));
}
__ addptr(rsp, ymm_bytes);
}
__ pop_FPU_state();
__ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
__ popf();
__ popa();
// Get the rbp, described implicitly by the frame sender code (no oopMap)
__ pop(rbp);
}
void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
// Just restore result register. Only used by deoptimization. By
// now any callee save register that needs to be restore to a c2
// caller of the deoptee has been extracted into the vframeArray
// and will be stuffed into the c2i adapter we create for later
// restoration so only result registers need to be restored here.
//
__ frstor(Address(rsp, 0)); // Restore fpu state
// Recover XMM & FPU state
if( UseSSE == 1 ) {
__ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
} else if( UseSSE >= 2 ) {
__ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
}
__ movptr(rax, Address(rsp, rax_off*wordSize));
__ movptr(rdx, Address(rsp, rdx_off*wordSize));
// Pop all of the register save are off the stack except the return address
__ addptr(rsp, return_off * wordSize);
}
// Is vector's size (in bytes) bigger than a size saved by default?
// 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
// Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
bool SharedRuntime::is_wide_vector(int size) {
return size > 16;
}
size_t SharedRuntime::trampoline_size() {
return 16;
}
void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
__ jump(RuntimeAddress(destination));
}
// The java_calling_convention describes stack locations as ideal slots on
// a frame with no abi restrictions. Since we must observe abi restrictions
// (like the placement of the register window) the slots must be biased by
// the following value.
static int reg2offset_in(VMReg r) {
// Account for saved rbp, and return address
// This should really be in_preserve_stack_slots
return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
}
static int reg2offset_out(VMReg r) {
return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
}
// ---------------------------------------------------------------------------
// Read the array of BasicTypes from a signature, and compute where the
// arguments should go. Values in the VMRegPair regs array refer to 4-byte
// quantities. Values less than SharedInfo::stack0 are registers, those above
// refer to 4-byte stack slots. All stack slots are based off of the stack pointer
// as framesizes are fixed.
// VMRegImpl::stack0 refers to the first slot 0(sp).
// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
// up to RegisterImpl::number_of_registers) are the 32-bit
// integer registers.
// Pass first two oop/int args in registers ECX and EDX.
// Pass first two float/double args in registers XMM0 and XMM1.
// Doubles have precedence, so if you pass a mix of floats and doubles
// the doubles will grab the registers before the floats will.
// Note: the INPUTS in sig_bt are in units of Java argument words, which are
// either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
// units regardless of build. Of course for i486 there is no 64 bit build
// ---------------------------------------------------------------------------
// The compiled Java calling convention.
// Pass first two oop/int args in registers ECX and EDX.
// Pass first two float/double args in registers XMM0 and XMM1.
// Doubles have precedence, so if you pass a mix of floats and doubles
// the doubles will grab the registers before the floats will.
int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
VMRegPair *regs,
int total_args_passed,
int is_outgoing) {
uint stack = 0; // Starting stack position for args on stack
// Pass first two oop/int args in registers ECX and EDX.
uint reg_arg0 = 9999;
uint reg_arg1 = 9999;
// Pass first two float/double args in registers XMM0 and XMM1.
// Doubles have precedence, so if you pass a mix of floats and doubles
// the doubles will grab the registers before the floats will.
// CNC - TURNED OFF FOR non-SSE.
// On Intel we have to round all doubles (and most floats) at
// call sites by storing to the stack in any case.
// UseSSE=0 ==> Don't Use ==> 9999+0
// UseSSE=1 ==> Floats only ==> 9999+1
// UseSSE>=2 ==> Floats or doubles ==> 9999+2
enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
uint fargs = (UseSSE>=2) ? 2 : UseSSE;
uint freg_arg0 = 9999+fargs;
uint freg_arg1 = 9999+fargs;
// Pass doubles & longs aligned on the stack. First count stack slots for doubles
int i;
for( i = 0; i < total_args_passed; i++) {
if( sig_bt[i] == T_DOUBLE ) {
// first 2 doubles go in registers
if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
else // Else double is passed low on the stack to be aligned.
stack += 2;
} else if( sig_bt[i] == T_LONG ) {
stack += 2;
}
}
int dstack = 0; // Separate counter for placing doubles
// Now pick where all else goes.
for( i = 0; i < total_args_passed; i++) {
// From the type and the argument number (count) compute the location
switch( sig_bt[i] ) {
case T_SHORT:
case T_CHAR:
case T_BYTE:
case T_BOOLEAN:
case T_INT:
case T_ARRAY:
case T_OBJECT:
case T_ADDRESS:
if( reg_arg0 == 9999 ) {
reg_arg0 = i;
regs[i].set1(rcx->as_VMReg());
} else if( reg_arg1 == 9999 ) {
reg_arg1 = i;
regs[i].set1(rdx->as_VMReg());
} else {
regs[i].set1(VMRegImpl::stack2reg(stack++));
}
break;
case T_FLOAT:
if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
freg_arg0 = i;
regs[i].set1(xmm0->as_VMReg());
} else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
freg_arg1 = i;
regs[i].set1(xmm1->as_VMReg());
} else {
regs[i].set1(VMRegImpl::stack2reg(stack++));
}
break;
case T_LONG:
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
regs[i].set2(VMRegImpl::stack2reg(dstack));
dstack += 2;
break;
case T_DOUBLE:
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
if( freg_arg0 == (uint)i ) {
regs[i].set2(xmm0->as_VMReg());
} else if( freg_arg1 == (uint)i ) {
regs[i].set2(xmm1->as_VMReg());
} else {
regs[i].set2(VMRegImpl::stack2reg(dstack));
dstack += 2;
}
break;
case T_VOID: regs[i].set_bad(); break;
break;
default:
ShouldNotReachHere();
break;
}
}
// return value can be odd number of VMRegImpl stack slots make multiple of 2
return align_up(stack, 2);
}
// Patch the callers callsite with entry to compiled code if it exists.
static void patch_callers_callsite(MacroAssembler *masm) {
Label L;
__ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, L);
// Schedule the branch target address early.
// Call into the VM to patch the caller, then jump to compiled callee
// rax, isn't live so capture return address while we easily can
__ movptr(rax, Address(rsp, 0));
__ pusha();
__ pushf();
if (UseSSE == 1) {
__ subptr(rsp, 2*wordSize);
__ movflt(Address(rsp, 0), xmm0);
__ movflt(Address(rsp, wordSize), xmm1);
}
if (UseSSE >= 2) {
__ subptr(rsp, 4*wordSize);
__ movdbl(Address(rsp, 0), xmm0);
__ movdbl(Address(rsp, 2*wordSize), xmm1);
}
#ifdef COMPILER2
// C2 may leave the stack dirty if not in SSE2+ mode
if (UseSSE >= 2) {
__ verify_FPU(0, "c2i transition should have clean FPU stack");
} else {
__ empty_FPU_stack();
}
#endif /* COMPILER2 */
// VM needs caller's callsite
__ push(rax);
// VM needs target method
__ push(rbx);
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
__ addptr(rsp, 2*wordSize);
if (UseSSE == 1) {
__ movflt(xmm0, Address(rsp, 0));
__ movflt(xmm1, Address(rsp, wordSize));
__ addptr(rsp, 2*wordSize);
}
if (UseSSE >= 2) {
__ movdbl(xmm0, Address(rsp, 0));
__ movdbl(xmm1, Address(rsp, 2*wordSize));
__ addptr(rsp, 4*wordSize);
}
__ popf();
__ popa();
__ bind(L);
}
static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
int next_off = st_off - Interpreter::stackElementSize;
__ movdbl(Address(rsp, next_off), r);
}
static void gen_c2i_adapter(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs,
Label& skip_fixup) {
// Before we get into the guts of the C2I adapter, see if we should be here
// at all. We've come from compiled code and are attempting to jump to the
// interpreter, which means the caller made a static call to get here
// (vcalls always get a compiled target if there is one). Check for a
// compiled target. If there is one, we need to patch the caller's call.
patch_callers_callsite(masm);
__ bind(skip_fixup);
#ifdef COMPILER2
// C2 may leave the stack dirty if not in SSE2+ mode
if (UseSSE >= 2) {
__ verify_FPU(0, "c2i transition should have clean FPU stack");
} else {
__ empty_FPU_stack();
}
#endif /* COMPILER2 */
// Since all args are passed on the stack, total_args_passed * interpreter_
// stack_element_size is the
// space we need.
int extraspace = total_args_passed * Interpreter::stackElementSize;
// Get return address
__ pop(rax);
// set senderSP value
__ movptr(rsi, rsp);
__ subptr(rsp, extraspace);
// Now write the args into the outgoing interpreter space
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_VOID) {
assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
continue;
}
// st_off points to lowest address on stack.
int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
int next_off = st_off - Interpreter::stackElementSize;
// Say 4 args:
// i st_off
// 0 12 T_LONG
// 1 8 T_VOID
// 2 4 T_OBJECT
// 3 0 T_BOOL
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (!r_1->is_valid()) {
assert(!r_2->is_valid(), "");
continue;
}
if (r_1->is_stack()) {
// memory to memory use fpu stack top
int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
if (!r_2->is_valid()) {
__ movl(rdi, Address(rsp, ld_off));
__ movptr(Address(rsp, st_off), rdi);
} else {
// ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
// st_off == MSW, st_off-wordSize == LSW
__ movptr(rdi, Address(rsp, ld_off));
__ movptr(Address(rsp, next_off), rdi);
#ifndef _LP64
__ movptr(rdi, Address(rsp, ld_off + wordSize));
__ movptr(Address(rsp, st_off), rdi);
#else
#ifdef ASSERT
// Overwrite the unused slot with known junk
__ mov64(rax, CONST64(0xdeadffffdeadaaaa));
__ movptr(Address(rsp, st_off), rax);
#endif /* ASSERT */
#endif // _LP64
}
} else if (r_1->is_Register()) {
Register r = r_1->as_Register();
if (!r_2->is_valid()) {
__ movl(Address(rsp, st_off), r);
} else {
// long/double in gpr
NOT_LP64(ShouldNotReachHere());
// Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
// T_DOUBLE and T_LONG use two slots in the interpreter
if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
// long/double in gpr
#ifdef ASSERT
// Overwrite the unused slot with known junk
LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
__ movptr(Address(rsp, st_off), rax);
#endif /* ASSERT */
__ movptr(Address(rsp, next_off), r);
} else {
__ movptr(Address(rsp, st_off), r);
}
}
} else {
assert(r_1->is_XMMRegister(), "");
if (!r_2->is_valid()) {
__ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
} else {
assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
}
}
}
// Schedule the branch target address early.
__ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
// And repush original return address
__ push(rax);
__ jmp(rcx);
}
static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
int next_val_off = ld_off - Interpreter::stackElementSize;
__ movdbl(r, Address(saved_sp, next_val_off));
}
static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
address code_start, address code_end,
Label& L_ok) {
Label L_fail;
__ lea(temp_reg, ExternalAddress(code_start));
__ cmpptr(pc_reg, temp_reg);
__ jcc(Assembler::belowEqual, L_fail);
__ lea(temp_reg, ExternalAddress(code_end));
__ cmpptr(pc_reg, temp_reg);
__ jcc(Assembler::below, L_ok);
__ bind(L_fail);
}
void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs) {
// Note: rsi contains the senderSP on entry. We must preserve it since
// we may do a i2c -> c2i transition if we lose a race where compiled
// code goes non-entrant while we get args ready.
// Adapters can be frameless because they do not require the caller
// to perform additional cleanup work, such as correcting the stack pointer.
// An i2c adapter is frameless because the *caller* frame, which is interpreted,
// routinely repairs its own stack pointer (from interpreter_frame_last_sp),
// even if a callee has modified the stack pointer.
// A c2i adapter is frameless because the *callee* frame, which is interpreted,
// routinely repairs its caller's stack pointer (from sender_sp, which is set
// up via the senderSP register).
// In other words, if *either* the caller or callee is interpreted, we can
// get the stack pointer repaired after a call.
// This is why c2i and i2c adapters cannot be indefinitely composed.
// In particular, if a c2i adapter were to somehow call an i2c adapter,
// both caller and callee would be compiled methods, and neither would
// clean up the stack pointer changes performed by the two adapters.
// If this happens, control eventually transfers back to the compiled
// caller, but with an uncorrected stack, causing delayed havoc.
// Pick up the return address
__ movptr(rax, Address(rsp, 0));
if (VerifyAdapterCalls &&
(Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
// So, let's test for cascading c2i/i2c adapters right now.
// assert(Interpreter::contains($return_addr) ||
// StubRoutines::contains($return_addr),
// "i2c adapter must return to an interpreter frame");
__ block_comment("verify_i2c { ");
Label L_ok;
if (Interpreter::code() != NULL)
range_check(masm, rax, rdi,
Interpreter::code()->code_start(), Interpreter::code()->code_end(),
L_ok);
if (StubRoutines::code1() != NULL)
range_check(masm, rax, rdi,
StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
L_ok);
if (StubRoutines::code2() != NULL)
range_check(masm, rax, rdi,
StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
L_ok);
const char* msg = "i2c adapter must return to an interpreter frame";
__ block_comment(msg);
__ stop(msg);
__ bind(L_ok);
__ block_comment("} verify_i2ce ");
}
// Must preserve original SP for loading incoming arguments because
// we need to align the outgoing SP for compiled code.
__ movptr(rdi, rsp);
// Cut-out for having no stack args. Since up to 2 int/oop args are passed
// in registers, we will occasionally have no stack args.
int comp_words_on_stack = 0;
if (comp_args_on_stack) {
// Sig words on the stack are greater-than VMRegImpl::stack0. Those in
// registers are below. By subtracting stack0, we either get a negative
// number (all values in registers) or the maximum stack slot accessed.
// int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
// Convert 4-byte stack slots to words.
comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
// Round up to miminum stack alignment, in wordSize
comp_words_on_stack = align_up(comp_words_on_stack, 2);
__ subptr(rsp, comp_words_on_stack * wordSize);
}
// Align the outgoing SP
__ andptr(rsp, -(StackAlignmentInBytes));
// push the return address on the stack (note that pushing, rather
// than storing it, yields the correct frame alignment for the callee)
__ push(rax);
// Put saved SP in another register
const Register saved_sp = rax;
__ movptr(saved_sp, rdi);
// Will jump to the compiled code just as if compiled code was doing it.
// Pre-load the register-jump target early, to schedule it better.
__ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
// Now generate the shuffle code. Pick up all register args and move the
// rest through the floating point stack top.
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_VOID) {
// Longs and doubles are passed in native word order, but misaligned
// in the 32-bit build.
assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
continue;
}
// Pick up 0, 1 or 2 words from SP+offset.
assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
"scrambled load targets?");
// Load in argument order going down.
int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
// Point to interpreter value (vs. tag)
int next_off = ld_off - Interpreter::stackElementSize;
//
//
//
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (!r_1->is_valid()) {
assert(!r_2->is_valid(), "");
continue;
}
if (r_1->is_stack()) {
// Convert stack slot to an SP offset (+ wordSize to account for return address )
int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
// We can use rsi as a temp here because compiled code doesn't need rsi as an input
// and if we end up going thru a c2i because of a miss a reasonable value of rsi
// we be generated.
if (!r_2->is_valid()) {
// __ fld_s(Address(saved_sp, ld_off));
// __ fstp_s(Address(rsp, st_off));
__ movl(rsi, Address(saved_sp, ld_off));
__ movptr(Address(rsp, st_off), rsi);
} else {
// Interpreter local[n] == MSW, local[n+1] == LSW however locals
// are accessed as negative so LSW is at LOW address
// ld_off is MSW so get LSW
// st_off is LSW (i.e. reg.first())
// __ fld_d(Address(saved_sp, next_off));
// __ fstp_d(Address(rsp, st_off));
//
// We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
// the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
// So we must adjust where to pick up the data to match the interpreter.
//
// Interpreter local[n] == MSW, local[n+1] == LSW however locals
// are accessed as negative so LSW is at LOW address
// ld_off is MSW so get LSW
const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
next_off : ld_off;
__ movptr(rsi, Address(saved_sp, offset));
__ movptr(Address(rsp, st_off), rsi);
#ifndef _LP64
__ movptr(rsi, Address(saved_sp, ld_off));
__ movptr(Address(rsp, st_off + wordSize), rsi);
#endif // _LP64
}
} else if (r_1->is_Register()) { // Register argument
Register r = r_1->as_Register();
assert(r != rax, "must be different");
if (r_2->is_valid()) {
//
// We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
// the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
// So we must adjust where to pick up the data to match the interpreter.
const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
next_off : ld_off;
// this can be a misaligned move
__ movptr(r, Address(saved_sp, offset));
#ifndef _LP64
assert(r_2->as_Register() != rax, "need another temporary register");
// Remember r_1 is low address (and LSB on x86)
// So r_2 gets loaded from high address regardless of the platform
__ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
#endif // _LP64
} else {
__ movl(r, Address(saved_sp, ld_off));
}
} else {
assert(r_1->is_XMMRegister(), "");
if (!r_2->is_valid()) {
__ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
} else {
move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
}
}
}
// 6243940 We might end up in handle_wrong_method if
// the callee is deoptimized as we race thru here. If that
// happens we don't want to take a safepoint because the
// caller frame will look interpreted and arguments are now
// "compiled" so it is much better to make this transition
// invisible to the stack walking code. Unfortunately if
// we try and find the callee by normal means a safepoint
// is possible. So we stash the desired callee in the thread
// and the vm will find there should this case occur.
__ get_thread(rax);
__ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
// move Method* to rax, in case we end up in an c2i adapter.
// the c2i adapters expect Method* in rax, (c2) because c2's
// resolve stubs return the result (the method) in rax,.
// I'd love to fix this.
__ mov(rax, rbx);
__ jmp(rdi);
}
// ---------------------------------------------------------------
AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs,
AdapterFingerPrint* fingerprint) {
address i2c_entry = __ pc();
gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
// -------------------------------------------------------------------------
// Generate a C2I adapter. On entry we know rbx, holds the Method* during calls
// to the interpreter. The args start out packed in the compiled layout. They
// need to be unpacked into the interpreter layout. This will almost always
// require some stack space. We grow the current (compiled) stack, then repack
// the args. We finally end in a jump to the generic interpreter entry point.
// On exit from the interpreter, the interpreter will restore our SP (lest the
// compiled code, which relys solely on SP and not EBP, get sick).
address c2i_unverified_entry = __ pc();
Label skip_fixup;
Register holder = rax;
Register receiver = rcx;
Register temp = rbx;
{
Label missed;
__ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
__ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
__ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
__ jcc(Assembler::notEqual, missed);
// Method might have been compiled since the call site was patched to
// interpreted if that is the case treat it as a miss so we can get
// the call site corrected.
__ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, skip_fixup);
__ bind(missed);
__ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
}
address c2i_entry = __ pc();
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->c2i_entry_barrier(masm);
gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
__ flush();
return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
}
int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
VMRegPair *regs,
VMRegPair *regs2,
int total_args_passed) {
assert(regs2 == NULL, "not needed on x86");
// We return the amount of VMRegImpl stack slots we need to reserve for all
// the arguments NOT counting out_preserve_stack_slots.
uint stack = 0; // All arguments on stack
for( int i = 0; i < total_args_passed; i++) {
// From the type and the argument number (count) compute the location
switch( sig_bt[i] ) {
case T_BOOLEAN:
case T_CHAR:
case T_FLOAT:
case T_BYTE:
case T_SHORT:
case T_INT:
case T_OBJECT:
case T_ARRAY:
case T_ADDRESS:
case T_METADATA:
regs[i].set1(VMRegImpl::stack2reg(stack++));
break;
case T_LONG:
case T_DOUBLE: // The stack numbering is reversed from Java
// Since C arguments do not get reversed, the ordering for
// doubles on the stack must be opposite the Java convention
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
regs[i].set2(VMRegImpl::stack2reg(stack));
stack += 2;
break;
case T_VOID: regs[i].set_bad(); break;
default:
ShouldNotReachHere();
break;
}
}
return stack;
}
// A simple move of integer like type
static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack
// __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
// __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
__ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
__ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
} else {
// stack to reg
__ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
}
} else if (dst.first()->is_stack()) {
// reg to stack
// no need to sign extend on 64bit
__ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
} else {
if (dst.first() != src.first()) {
__ mov(dst.first()->as_Register(), src.first()->as_Register());
}
}
}
// An oop arg. Must pass a handle not the oop itself
static void object_move(MacroAssembler* masm,
OopMap* map,
int oop_handle_offset,
int framesize_in_slots,
VMRegPair src,
VMRegPair dst,
bool is_receiver,
int* receiver_offset) {
// Because of the calling conventions we know that src can be a
// register or a stack location. dst can only be a stack location.
assert(dst.first()->is_stack(), "must be stack");
// must pass a handle. First figure out the location we use as a handle
if (src.first()->is_stack()) {
// Oop is already on the stack as an argument
Register rHandle = rax;
Label nil;
__ xorptr(rHandle, rHandle);
__ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, nil);
__ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
__ bind(nil);
__ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
if (is_receiver) {
*receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
}
} else {
// Oop is in an a register we must store it to the space we reserve
// on the stack for oop_handles
const Register rOop = src.first()->as_Register();
const Register rHandle = rax;
int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
int offset = oop_slot*VMRegImpl::stack_slot_size;
Label skip;
__ movptr(Address(rsp, offset), rOop);
map->set_oop(VMRegImpl::stack2reg(oop_slot));
__ xorptr(rHandle, rHandle);
__ cmpptr(rOop, (int32_t)NULL_WORD);
__ jcc(Assembler::equal, skip);
__ lea(rHandle, Address(rsp, offset));
__ bind(skip);
// Store the handle parameter
__ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
if (is_receiver) {
*receiver_offset = offset;
}
}
}
// A float arg may have to do float reg int reg conversion
static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
// Because of the calling convention we know that src is either a stack location
// or an xmm register. dst can only be a stack location.
assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
if (src.first()->is_stack()) {
__ movl(rax, Address(rbp, reg2offset_in(src.first())));
__ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
} else {
// reg to stack
__ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
}
}
// A long move
static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
// The only legal possibility for a long_move VMRegPair is:
// 1: two stack slots (possibly unaligned)
// as neither the java or C calling convention will use registers
// for longs.
if (src.first()->is_stack() && dst.first()->is_stack()) {
assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
__ movptr(rax, Address(rbp, reg2offset_in(src.first())));
NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
__ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
} else {
ShouldNotReachHere();
}
}
// A double move
static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
// The only legal possibilities for a double_move VMRegPair are:
// The painful thing here is that like long_move a VMRegPair might be
// Because of the calling convention we know that src is either
// 1: a single physical register (xmm registers only)
// 2: two stack slots (possibly unaligned)
// dst can only be a pair of stack slots.
assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
if (src.first()->is_stack()) {
// source is all stack
__ movptr(rax, Address(rbp, reg2offset_in(src.first())));
NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
__ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
} else {
// reg to stack
// No worries about stack alignment
__ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
}
}
void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
// We always ignore the frame_slots arg and just use the space just below frame pointer
// which by this time is free to use
switch (ret_type) {
case T_FLOAT:
__ fstp_s(Address(rbp, -wordSize));
break;
case T_DOUBLE:
__ fstp_d(Address(rbp, -2*wordSize));
break;
case T_VOID: break;
case T_LONG:
__ movptr(Address(rbp, -wordSize), rax);
NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
break;
default: {
__ movptr(Address(rbp, -wordSize), rax);
}
}
}
void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
// We always ignore the frame_slots arg and just use the space just below frame pointer
// which by this time is free to use
switch (ret_type) {
case T_FLOAT:
__ fld_s(Address(rbp, -wordSize));
break;
case T_DOUBLE:
__ fld_d(Address(rbp, -2*wordSize));
break;
case T_LONG:
__ movptr(rax, Address(rbp, -wordSize));
NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
break;
case T_VOID: break;
default: {
__ movptr(rax, Address(rbp, -wordSize));
}
}
}
static void save_or_restore_arguments(MacroAssembler* masm,
const int stack_slots,
const int total_in_args,
const int arg_save_area,
OopMap* map,
VMRegPair* in_regs,
BasicType* in_sig_bt) {
// if map is non-NULL then the code should store the values,
// otherwise it should load them.
int handle_index = 0;
// Save down double word first
for ( int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
int offset = slot * VMRegImpl::stack_slot_size;
handle_index += 2;
assert(handle_index <= stack_slots, "overflow");
if (map != NULL) {
__ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
} else {
__ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
}
}
if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
int offset = slot * VMRegImpl::stack_slot_size;
handle_index += 2;
assert(handle_index <= stack_slots, "overflow");
if (map != NULL) {
__ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
if (in_regs[i].second()->is_Register()) {
__ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
}
} else {
__ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
if (in_regs[i].second()->is_Register()) {
__ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
}
}
}
}
// Save or restore single word registers
for ( int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_Register()) {
int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
int offset = slot * VMRegImpl::stack_slot_size;
assert(handle_index <= stack_slots, "overflow");
if (in_sig_bt[i] == T_ARRAY && map != NULL) {
map->set_oop(VMRegImpl::stack2reg(slot));;
}
// Value is in an input register pass we must flush it to the stack
const Register reg = in_regs[i].first()->as_Register();
switch (in_sig_bt[i]) {
case T_ARRAY:
if (map != NULL) {
__ movptr(Address(rsp, offset), reg);
} else {
__ movptr(reg, Address(rsp, offset));
}
break;
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
if (map != NULL) {
__ movl(Address(rsp, offset), reg);
} else {
__ movl(reg, Address(rsp, offset));
}
break;
case T_OBJECT:
default: ShouldNotReachHere();
}
} else if (in_regs[i].first()->is_XMMRegister()) {
if (in_sig_bt[i] == T_FLOAT) {
int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
int offset = slot * VMRegImpl::stack_slot_size;
assert(handle_index <= stack_slots, "overflow");
if (map != NULL) {
__ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
} else {
__ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
}
}
} else if (in_regs[i].first()->is_stack()) {
if (in_sig_bt[i] == T_ARRAY && map != NULL) {
int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
}
}
}
}
// Registers need to be saved for runtime call
static Register caller_saved_registers[] = {
rcx, rdx, rsi, rdi
};
// Save caller saved registers except r1 and r2
static void save_registers_except(MacroAssembler* masm, Register r1, Register r2) {
int reg_len = (int)(sizeof(caller_saved_registers) / sizeof(Register));
for (int index = 0; index < reg_len; index ++) {
Register this_reg = caller_saved_registers[index];
if (this_reg != r1 && this_reg != r2) {
__ push(this_reg);
}
}
}
// Restore caller saved registers except r1 and r2
static void restore_registers_except(MacroAssembler* masm, Register r1, Register r2) {
int reg_len = (int)(sizeof(caller_saved_registers) / sizeof(Register));
for (int index = reg_len - 1; index >= 0; index --) {
Register this_reg = caller_saved_registers[index];
if (this_reg != r1 && this_reg != r2) {
__ pop(this_reg);
}
}
}
// Pin object, return pinned object or null in rax
static void gen_pin_object(MacroAssembler* masm,
Register thread, VMRegPair reg) {
__ block_comment("gen_pin_object {");
Label is_null;
Register tmp_reg = rax;
VMRegPair tmp(tmp_reg->as_VMReg());
if (reg.first()->is_stack()) {
// Load the arg up from the stack
simple_move32(masm, reg, tmp);
reg = tmp;
} else {
__ movl(tmp_reg, reg.first()->as_Register());
}
__ testptr(reg.first()->as_Register(), reg.first()->as_Register());
__ jccb(Assembler::equal, is_null);
// Save registers that may be used by runtime call
Register arg = reg.first()->is_Register() ? reg.first()->as_Register() : noreg;
save_registers_except(masm, arg, thread);
__ call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::pin_object),
thread, reg.first()->as_Register());
// Restore saved registers
restore_registers_except(masm, arg, thread);
__ bind(is_null);
__ block_comment("} gen_pin_object");
}
// Unpin object
static void gen_unpin_object(MacroAssembler* masm,
Register thread, VMRegPair reg) {
__ block_comment("gen_unpin_object {");
Label is_null;
// temp register
__ push(rax);
Register tmp_reg = rax;
VMRegPair tmp(tmp_reg->as_VMReg());
simple_move32(masm, reg, tmp);
__ testptr(rax, rax);
__ jccb(Assembler::equal, is_null);
// Save registers that may be used by runtime call
Register arg = reg.first()->is_Register() ? reg.first()->as_Register() : noreg;
save_registers_except(masm, arg, thread);
__ call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::unpin_object),
thread, rax);
// Restore saved registers
restore_registers_except(masm, arg, thread);
__ bind(is_null);
__ pop(rax);
__ block_comment("} gen_unpin_object");
}
// Check GCLocker::needs_gc and enter the runtime if it's true. This
// keeps a new JNI critical region from starting until a GC has been
// forced. Save down any oops in registers and describe them in an
// OopMap.
static void check_needs_gc_for_critical_native(MacroAssembler* masm,
Register thread,
int stack_slots,
int total_c_args,
int total_in_args,
int arg_save_area,
OopMapSet* oop_maps,
VMRegPair* in_regs,
BasicType* in_sig_bt) {
__ block_comment("check GCLocker::needs_gc");
Label cont;
__ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
__ jcc(Assembler::equal, cont);
// Save down any incoming oops and call into the runtime to halt for a GC
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, map, in_regs, in_sig_bt);
address the_pc = __ pc();
oop_maps->add_gc_map( __ offset(), map);
__ set_last_Java_frame(thread, rsp, noreg, the_pc);
__ block_comment("block_for_jni_critical");
__ push(thread);
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
__ increment(rsp, wordSize);
__ get_thread(thread);
__ reset_last_Java_frame(thread, false);
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, NULL, in_regs, in_sig_bt);
__ bind(cont);
#ifdef ASSERT
if (StressCriticalJNINatives) {
// Stress register saving
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, map, in_regs, in_sig_bt);
// Destroy argument registers
for (int i = 0; i < total_in_args - 1; i++) {
if (in_regs[i].first()->is_Register()) {
const Register reg = in_regs[i].first()->as_Register();
__ xorptr(reg, reg);
} else if (in_regs[i].first()->is_XMMRegister()) {
__ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
} else if (in_regs[i].first()->is_FloatRegister()) {
ShouldNotReachHere();
} else if (in_regs[i].first()->is_stack()) {
// Nothing to do
} else {
ShouldNotReachHere();
}
if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
i++;
}
}
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, NULL, in_regs, in_sig_bt);
}
#endif
}
// Unpack an array argument into a pointer to the body and the length
// if the array is non-null, otherwise pass 0 for both.
static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
Register tmp_reg = rax;
assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
"possible collision");
assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
"possible collision");
// Pass the length, ptr pair
Label is_null, done;
VMRegPair tmp(tmp_reg->as_VMReg());
if (reg.first()->is_stack()) {
// Load the arg up from the stack
simple_move32(masm, reg, tmp);
reg = tmp;
}
__ testptr(reg.first()->as_Register(), reg.first()->as_Register());
__ jccb(Assembler::equal, is_null);
__ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
simple_move32(masm, tmp, body_arg);
// load the length relative to the body.
__ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
arrayOopDesc::base_offset_in_bytes(in_elem_type)));
simple_move32(masm, tmp, length_arg);
__ jmpb(done);
__ bind(is_null);
// Pass zeros
__ xorptr(tmp_reg, tmp_reg);
simple_move32(masm, tmp, body_arg);
simple_move32(masm, tmp, length_arg);
__ bind(done);
}
static void verify_oop_args(MacroAssembler* masm,
const methodHandle& method,
const BasicType* sig_bt,
const VMRegPair* regs) {
Register temp_reg = rbx; // not part of any compiled calling seq
if (VerifyOops) {
for (int i = 0; i < method->size_of_parameters(); i++) {
if (is_reference_type(sig_bt[i])) {
VMReg r = regs[i].first();
assert(r->is_valid(), "bad oop arg");
if (r->is_stack()) {
__ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
__ verify_oop(temp_reg);
} else {
__ verify_oop(r->as_Register());
}
}
}
}
}
static void gen_special_dispatch(MacroAssembler* masm,
const methodHandle& method,
const BasicType* sig_bt,
const VMRegPair* regs) {
verify_oop_args(masm, method, sig_bt, regs);
vmIntrinsics::ID iid = method->intrinsic_id();
// Now write the args into the outgoing interpreter space
bool has_receiver = false;
Register receiver_reg = noreg;
int member_arg_pos = -1;
Register member_reg = noreg;
int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
if (ref_kind != 0) {
member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
member_reg = rbx; // known to be free at this point
has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
} else if (iid == vmIntrinsics::_invokeBasic) {
has_receiver = true;
} else {
fatal("unexpected intrinsic id %d", iid);
}
if (member_reg != noreg) {
// Load the member_arg into register, if necessary.
SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
VMReg r = regs[member_arg_pos].first();
if (r->is_stack()) {
__ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
} else {
// no data motion is needed
member_reg = r->as_Register();
}
}
if (has_receiver) {
// Make sure the receiver is loaded into a register.
assert(method->size_of_parameters() > 0, "oob");
assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
VMReg r = regs[0].first();
assert(r->is_valid(), "bad receiver arg");
if (r->is_stack()) {
// Porting note: This assumes that compiled calling conventions always
// pass the receiver oop in a register. If this is not true on some
// platform, pick a temp and load the receiver from stack.
fatal("receiver always in a register");
receiver_reg = rcx; // known to be free at this point
__ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
} else {
// no data motion is needed
receiver_reg = r->as_Register();
}
}
// Figure out which address we are really jumping to:
MethodHandles::generate_method_handle_dispatch(masm, iid,
receiver_reg, member_reg, /*for_compiler_entry:*/ true);
}
// ---------------------------------------------------------------------------
// Generate a native wrapper for a given method. The method takes arguments
// in the Java compiled code convention, marshals them to the native
// convention (handlizes oops, etc), transitions to native, makes the call,
// returns to java state (possibly blocking), unhandlizes any result and
// returns.
//
// Critical native functions are a shorthand for the use of
// GetPrimtiveArrayCritical and disallow the use of any other JNI
// functions. The wrapper is expected to unpack the arguments before
// passing them to the callee and perform checks before and after the
// native call to ensure that they GCLocker
// lock_critical/unlock_critical semantics are followed. Some other
// parts of JNI setup are skipped like the tear down of the JNI handle
// block and the check for pending exceptions it's impossible for them
// to be thrown.
//
// They are roughly structured like this:
// if (GCLocker::needs_gc())
// SharedRuntime::block_for_jni_critical();
// tranistion to thread_in_native
// unpack arrray arguments and call native entry point
// check for safepoint in progress
// check if any thread suspend flags are set
// call into JVM and possible unlock the JNI critical
// if a GC was suppressed while in the critical native.
// transition back to thread_in_Java
// return to caller
//
nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
const methodHandle& method,
int compile_id,
BasicType* in_sig_bt,
VMRegPair* in_regs,
BasicType ret_type,
address critical_entry) {
if (method->is_method_handle_intrinsic()) {
vmIntrinsics::ID iid = method->intrinsic_id();
intptr_t start = (intptr_t)__ pc();
int vep_offset = ((intptr_t)__ pc()) - start;
gen_special_dispatch(masm,
method,
in_sig_bt,
in_regs);
int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
__ flush();
int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
return nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
vep_offset,
frame_complete,
stack_slots / VMRegImpl::slots_per_word,
in_ByteSize(-1),
in_ByteSize(-1),
(OopMapSet*)NULL);
}
bool is_critical_native = true;
address native_func = critical_entry;
if (native_func == NULL) {
native_func = method->native_function();
is_critical_native = false;
}
assert(native_func != NULL, "must have function");
// An OopMap for lock (and class if static)
OopMapSet *oop_maps = new OopMapSet();
// We have received a description of where all the java arg are located
// on entry to the wrapper. We need to convert these args to where
// the jni function will expect them. To figure out where they go
// we convert the java signature to a C signature by inserting
// the hidden arguments as arg[0] and possibly arg[1] (static method)
const int total_in_args = method->size_of_parameters();
int total_c_args = total_in_args;
if (!is_critical_native) {
total_c_args += 1;
if (method->is_static()) {
total_c_args++;
}
} else {
for (int i = 0; i < total_in_args; i++) {
if (in_sig_bt[i] == T_ARRAY) {
total_c_args++;
}
}
}
BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
BasicType* in_elem_bt = NULL;
int argc = 0;
if (!is_critical_native) {
out_sig_bt[argc++] = T_ADDRESS;
if (method->is_static()) {
out_sig_bt[argc++] = T_OBJECT;
}
for (int i = 0; i < total_in_args ; i++ ) {
out_sig_bt[argc++] = in_sig_bt[i];
}
} else {
in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
SignatureStream ss(method->signature());
for (int i = 0; i < total_in_args ; i++ ) {
if (in_sig_bt[i] == T_ARRAY) {
// Arrays are passed as int, elem* pair
out_sig_bt[argc++] = T_INT;
out_sig_bt[argc++] = T_ADDRESS;
Symbol* atype = ss.as_symbol();
const char* at = atype->as_C_string();
if (strlen(at) == 2) {
assert(at[0] == '[', "must be");
switch (at[1]) {
case 'B': in_elem_bt[i] = T_BYTE; break;
case 'C': in_elem_bt[i] = T_CHAR; break;
case 'D': in_elem_bt[i] = T_DOUBLE; break;
case 'F': in_elem_bt[i] = T_FLOAT; break;
case 'I': in_elem_bt[i] = T_INT; break;
case 'J': in_elem_bt[i] = T_LONG; break;
case 'S': in_elem_bt[i] = T_SHORT; break;
case 'Z': in_elem_bt[i] = T_BOOLEAN; break;
default: ShouldNotReachHere();
}
}
} else {
out_sig_bt[argc++] = in_sig_bt[i];
in_elem_bt[i] = T_VOID;
}
if (in_sig_bt[i] != T_VOID) {
assert(in_sig_bt[i] == ss.type(), "must match");
ss.next();
}
}
}
// Now figure out where the args must be stored and how much stack space
// they require.
int out_arg_slots;
out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
// Compute framesize for the wrapper. We need to handlize all oops in
// registers a max of 2 on x86.
// Calculate the total number of stack slots we will need.
// First count the abi requirement plus all of the outgoing args
int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
// Now the space for the inbound oop handle area
int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
if (is_critical_native) {
// Critical natives may have to call out so they need a save area
// for register arguments.
int double_slots = 0;
int single_slots = 0;
for ( int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_Register()) {
const Register reg = in_regs[i].first()->as_Register();
switch (in_sig_bt[i]) {
case T_ARRAY: // critical array (uses 2 slots on LP64)
case T_BOOLEAN:
case T_BYTE:
case T_SHORT:
case T_CHAR:
case T_INT: single_slots++; break;
case T_LONG: double_slots++; break;
default: ShouldNotReachHere();
}
} else if (in_regs[i].first()->is_XMMRegister()) {
switch (in_sig_bt[i]) {
case T_FLOAT: single_slots++; break;
case T_DOUBLE: double_slots++; break;
default: ShouldNotReachHere();
}
} else if (in_regs[i].first()->is_FloatRegister()) {
ShouldNotReachHere();
}
}
total_save_slots = double_slots * 2 + single_slots;
// align the save area
if (double_slots != 0) {
stack_slots = align_up(stack_slots, 2);
}
}
int oop_handle_offset = stack_slots;
stack_slots += total_save_slots;
// Now any space we need for handlizing a klass if static method
int klass_slot_offset = 0;
int klass_offset = -1;
int lock_slot_offset = 0;
bool is_static = false;
if (method->is_static()) {
klass_slot_offset = stack_slots;
stack_slots += VMRegImpl::slots_per_word;
klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
is_static = true;
}
// Plus a lock if needed
if (method->is_synchronized()) {
lock_slot_offset = stack_slots;
stack_slots += VMRegImpl::slots_per_word;
}
// Now a place (+2) to save return values or temp during shuffling
// + 2 for return address (which we own) and saved rbp,
stack_slots += 4;
// Ok The space we have allocated will look like:
//
//
// FP-> | |
// |---------------------|
// | 2 slots for moves |
// |---------------------|
// | lock box (if sync) |
// |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset)
// | klass (if static) |
// |---------------------| <- klass_slot_offset
// | oopHandle area |
// |---------------------| <- oop_handle_offset (a max of 2 registers)
// | outbound memory |
// | based arguments |
// | |
// |---------------------|
// | |
// SP-> | out_preserved_slots |
//
//
// ****************************************************************************
// WARNING - on Windows Java Natives use pascal calling convention and pop the
// arguments off of the stack after the jni call. Before the call we can use
// instructions that are SP relative. After the jni call we switch to FP
// relative instructions instead of re-adjusting the stack on windows.
// ****************************************************************************
// Now compute actual number of stack words we need rounding to make
// stack properly aligned.
stack_slots = align_up(stack_slots, StackAlignmentInSlots);
int stack_size = stack_slots * VMRegImpl::stack_slot_size;
intptr_t start = (intptr_t)__ pc();
// First thing make an ic check to see if we should even be here
// We are free to use all registers as temps without saving them and
// restoring them except rbp. rbp is the only callee save register
// as far as the interpreter and the compiler(s) are concerned.
const Register ic_reg = rax;
const Register receiver = rcx;
Label hit;
Label exception_pending;
__ verify_oop(receiver);
__ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
__ jcc(Assembler::equal, hit);
__ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
// verified entry must be aligned for code patching.
// and the first 5 bytes must be in the same cache line
// if we align at 8 then we will be sure 5 bytes are in the same line
__ align(8);
__ bind(hit);
int vep_offset = ((intptr_t)__ pc()) - start;
#ifdef COMPILER1
// For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
}
#endif // COMPILER1
// The instruction at the verified entry point must be 5 bytes or longer
// because it can be patched on the fly by make_non_entrant. The stack bang
// instruction fits that requirement.
// Generate stack overflow check
if (UseStackBanging) {
__ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
} else {
// need a 5 byte instruction to allow MT safe patching to non-entrant
__ fat_nop();
}
// Generate a new frame for the wrapper.
__ enter();
// -2 because return address is already present and so is saved rbp
__ subptr(rsp, stack_size - 2*wordSize);
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->nmethod_entry_barrier(masm);
// Frame is now completed as far as size and linkage.
int frame_complete = ((intptr_t)__ pc()) - start;
if (UseRTMLocking) {
// Abort RTM transaction before calling JNI
// because critical section will be large and will be
// aborted anyway. Also nmethod could be deoptimized.
__ xabort(0);
}
// Calculate the difference between rsp and rbp,. We need to know it
// after the native call because on windows Java Natives will pop
// the arguments and it is painful to do rsp relative addressing
// in a platform independent way. So after the call we switch to
// rbp, relative addressing.
int fp_adjustment = stack_size - 2*wordSize;
#ifdef COMPILER2
// C2 may leave the stack dirty if not in SSE2+ mode
if (UseSSE >= 2) {
__ verify_FPU(0, "c2i transition should have clean FPU stack");
} else {
__ empty_FPU_stack();
}
#endif /* COMPILER2 */
// Compute the rbp, offset for any slots used after the jni call
int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
// We use rdi as a thread pointer because it is callee save and
// if we load it once it is usable thru the entire wrapper
const Register thread = rdi;
// We use rsi as the oop handle for the receiver/klass
// It is callee save so it survives the call to native
const Register oop_handle_reg = rsi;
__ get_thread(thread);
if (is_critical_native && !Universe::heap()->supports_object_pinning()) {
check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
oop_handle_offset, oop_maps, in_regs, in_sig_bt);
}
//
// We immediately shuffle the arguments so that any vm call we have to
// make from here on out (sync slow path, jvmti, etc.) we will have
// captured the oops from our caller and have a valid oopMap for
// them.
// -----------------
// The Grand Shuffle
//
// Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
// and, if static, the class mirror instead of a receiver. This pretty much
// guarantees that register layout will not match (and x86 doesn't use reg
// parms though amd does). Since the native abi doesn't use register args
// and the java conventions does we don't have to worry about collisions.
// All of our moved are reg->stack or stack->stack.
// We ignore the extra arguments during the shuffle and handle them at the
// last moment. The shuffle is described by the two calling convention
// vectors we have in our possession. We simply walk the java vector to
// get the source locations and the c vector to get the destinations.
int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
// Record rsp-based slot for receiver on stack for non-static methods
int receiver_offset = -1;
// This is a trick. We double the stack slots so we can claim
// the oops in the caller's frame. Since we are sure to have
// more args than the caller doubling is enough to make
// sure we can capture all the incoming oop args from the
// caller.
//
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
// Inbound arguments that need to be pinned for critical natives
GrowableArray<int> pinned_args(total_in_args);
// Current stack slot for storing register based array argument
int pinned_slot = oop_handle_offset;
// Mark location of rbp,
// map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
// We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
// Are free to temporaries if we have to do stack to steck moves.
// All inbound args are referenced based on rbp, and all outbound args via rsp.
for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
switch (in_sig_bt[i]) {
case T_ARRAY:
if (is_critical_native) {
VMRegPair in_arg = in_regs[i];
if (Universe::heap()->supports_object_pinning()) {
// gen_pin_object handles save and restore
// of any clobbered registers
gen_pin_object(masm, thread, in_arg);
pinned_args.append(i);
// rax has pinned array
VMRegPair result_reg(rax->as_VMReg());
if (!in_arg.first()->is_stack()) {
assert(pinned_slot <= stack_slots, "overflow");
simple_move32(masm, result_reg, VMRegImpl::stack2reg(pinned_slot));
pinned_slot += VMRegImpl::slots_per_word;
} else {
// Write back pinned value, it will be used to unpin this argument
__ movptr(Address(rbp, reg2offset_in(in_arg.first())), result_reg.first()->as_Register());
}
// We have the array in register, use it
in_arg = result_reg;
}
unpack_array_argument(masm, in_arg, in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
c_arg++;
break;
}
case T_OBJECT:
assert(!is_critical_native, "no oop arguments");
object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
((i == 0) && (!is_static)),
&receiver_offset);
break;
case T_VOID:
break;
case T_FLOAT:
float_move(masm, in_regs[i], out_regs[c_arg]);
break;
case T_DOUBLE:
assert( i + 1 < total_in_args &&
in_sig_bt[i + 1] == T_VOID &&
out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
double_move(masm, in_regs[i], out_regs[c_arg]);
break;
case T_LONG :
long_move(masm, in_regs[i], out_regs[c_arg]);
break;
case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
default:
simple_move32(masm, in_regs[i], out_regs[c_arg]);
}
}
// Pre-load a static method's oop into rsi. Used both by locking code and
// the normal JNI call code.
if (method->is_static() && !is_critical_native) {
// load opp into a register
__ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
// Now handlize the static class mirror it's known not-null.
__ movptr(Address(rsp, klass_offset), oop_handle_reg);
map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
// Now get the handle
__ lea(oop_handle_reg, Address(rsp, klass_offset));
// store the klass handle as second argument
__ movptr(Address(rsp, wordSize), oop_handle_reg);
}
// Change state to native (we save the return address in the thread, since it might not
// be pushed on the stack when we do a a stack traversal). It is enough that the pc()
// points into the right code segment. It does not have to be the correct return pc.
// We use the same pc/oopMap repeatedly when we call out
intptr_t the_pc = (intptr_t) __ pc();
oop_maps->add_gc_map(the_pc - start, map);
__ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
// We have all of the arguments setup at this point. We must not touch any register
// argument registers at this point (what if we save/restore them there are no oop?
{
SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
__ mov_metadata(rax, method());
__ call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
thread, rax);
}
// RedefineClasses() tracing support for obsolete method entry
if (log_is_enabled(Trace, redefine, class, obsolete)) {
__ mov_metadata(rax, method());
__ call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
thread, rax);
}
// These are register definitions we need for locking/unlocking
const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
const Register obj_reg = rcx; // Will contain the oop
const Register lock_reg = rdx; // Address of compiler lock object (BasicLock)
Label slow_path_lock;
Label lock_done;
// Lock a synchronized method
if (method->is_synchronized()) {
assert(!is_critical_native, "unhandled");
const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
// Get the handle (the 2nd argument)
__ movptr(oop_handle_reg, Address(rsp, wordSize));
// Get address of the box
__ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
// Load the oop from the handle
__ movptr(obj_reg, Address(oop_handle_reg, 0));
if (UseBiasedLocking) {
// Note that oop_handle_reg is trashed during this call
__ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
}
// Load immediate 1 into swap_reg %rax,
__ movptr(swap_reg, 1);
// Load (object->mark() | 1) into swap_reg %rax,
__ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
// Save (object->mark() | 1) into BasicLock's displaced header
__ movptr(Address(lock_reg, mark_word_offset), swap_reg);
// src -> dest iff dest == rax, else rax, <- dest
// *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
__ lock();
__ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
__ jcc(Assembler::equal, lock_done);
// Test if the oopMark is an obvious stack pointer, i.e.,
// 1) (mark & 3) == 0, and
// 2) rsp <= mark < mark + os::pagesize()
// These 3 tests can be done by evaluating the following
// expression: ((mark - rsp) & (3 - os::vm_page_size())),
// assuming both stack pointer and pagesize have their
// least significant 2 bits clear.
// NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
__ subptr(swap_reg, rsp);
__ andptr(swap_reg, 3 - os::vm_page_size());
// Save the test result, for recursive case, the result is zero
__ movptr(Address(lock_reg, mark_word_offset), swap_reg);
__ jcc(Assembler::notEqual, slow_path_lock);
// Slow path will re-enter here
__ bind(lock_done);
if (UseBiasedLocking) {
// Re-fetch oop_handle_reg as we trashed it above
__ movptr(oop_handle_reg, Address(rsp, wordSize));
}
}
// Finally just about ready to make the JNI call
// get JNIEnv* which is first argument to native
if (!is_critical_native) {
__ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
__ movptr(Address(rsp, 0), rdx);
}
// Now set thread in native
__ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
__ call(RuntimeAddress(native_func));
// Verify or restore cpu control state after JNI call
__ restore_cpu_control_state_after_jni();
// WARNING - on Windows Java Natives use pascal calling convention and pop the
// arguments off of the stack. We could just re-adjust the stack pointer here
// and continue to do SP relative addressing but we instead switch to FP
// relative addressing.
// Unpack native results.
switch (ret_type) {
case T_BOOLEAN: __ c2bool(rax); break;
case T_CHAR : __ andptr(rax, 0xFFFF); break;
case T_BYTE : __ sign_extend_byte (rax); break;
case T_SHORT : __ sign_extend_short(rax); break;
case T_INT : /* nothing to do */ break;
case T_DOUBLE :
case T_FLOAT :
// Result is in st0 we'll save as needed
break;
case T_ARRAY: // Really a handle
case T_OBJECT: // Really a handle
break; // can't de-handlize until after safepoint check
case T_VOID: break;
case T_LONG: break;
default : ShouldNotReachHere();
}
// unpin pinned arguments
pinned_slot = oop_handle_offset;
if (pinned_args.length() > 0) {
// save return value that may be overwritten otherwise.
save_native_result(masm, ret_type, stack_slots);
for (int index = 0; index < pinned_args.length(); index ++) {
int i = pinned_args.at(index);
assert(pinned_slot <= stack_slots, "overflow");
if (!in_regs[i].first()->is_stack()) {
int offset = pinned_slot * VMRegImpl::stack_slot_size;
__ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
pinned_slot += VMRegImpl::slots_per_word;
}
// gen_pin_object handles save and restore
// of any other clobbered registers
gen_unpin_object(masm, thread, in_regs[i]);
}
restore_native_result(masm, ret_type, stack_slots);
}
// Switch thread to "native transition" state before reading the synchronization state.
// This additional state is necessary because reading and testing the synchronization
// state is not atomic w.r.t. GC, as this scenario demonstrates:
// Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
// VM thread changes sync state to synchronizing and suspends threads for GC.
// Thread A is resumed to finish this native method, but doesn't block here since it
// didn't see any synchronization is progress, and escapes.
__ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
// Force this write out before the read below
__ membar(Assembler::Membar_mask_bits(
Assembler::LoadLoad | Assembler::LoadStore |
Assembler::StoreLoad | Assembler::StoreStore));
if (AlwaysRestoreFPU) {
// Make sure the control word is correct.
__ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
}
Label after_transition;
// check for safepoint operation in progress and/or pending suspend requests
{ Label Continue, slow_path;
__ safepoint_poll(slow_path, thread, noreg);
__ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
__ jcc(Assembler::equal, Continue);
__ bind(slow_path);
// Don't use call_VM as it will see a possible pending exception and forward it
// and never return here preventing us from clearing _last_native_pc down below.
// Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
// preserved and correspond to the bcp/locals pointers. So we do a runtime call
// by hand.
//
__ vzeroupper();
save_native_result(masm, ret_type, stack_slots);
__ push(thread);
if (!is_critical_native) {
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
JavaThread::check_special_condition_for_native_trans)));
} else {
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
JavaThread::check_special_condition_for_native_trans_and_transition)));
}
__ increment(rsp, wordSize);
// Restore any method result value
restore_native_result(masm, ret_type, stack_slots);
if (is_critical_native) {
// The call above performed the transition to thread_in_Java so
// skip the transition logic below.
__ jmpb(after_transition);
}
__ bind(Continue);
}
// change thread state
__ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
__ bind(after_transition);
Label reguard;
Label reguard_done;
__ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
__ jcc(Assembler::equal, reguard);
// slow path reguard re-enters here
__ bind(reguard_done);
// Handle possible exception (will unlock if necessary)
// native result if any is live
// Unlock
Label slow_path_unlock;
Label unlock_done;
if (method->is_synchronized()) {
Label done;
// Get locked oop from the handle we passed to jni
__ movptr(obj_reg, Address(oop_handle_reg, 0));
if (UseBiasedLocking) {
__ biased_locking_exit(obj_reg, rbx, done);
}
// Simple recursive lock?
__ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, done);
// Must save rax, if if it is live now because cmpxchg must use it
if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
save_native_result(masm, ret_type, stack_slots);
}
// get old displaced header
__ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
// get address of the stack lock
__ lea(rax, Address(rbp, lock_slot_rbp_offset));
// Atomic swap old header if oop still contains the stack lock
// src -> dest iff dest == rax, else rax, <- dest
// *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
__ lock();
__ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
__ jcc(Assembler::notEqual, slow_path_unlock);
// slow path re-enters here
__ bind(unlock_done);
if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
restore_native_result(masm, ret_type, stack_slots);
}
__ bind(done);
}
{
SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
// Tell dtrace about this method exit
save_native_result(masm, ret_type, stack_slots);
__ mov_metadata(rax, method());
__ call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
thread, rax);
restore_native_result(masm, ret_type, stack_slots);
}
// We can finally stop using that last_Java_frame we setup ages ago
__ reset_last_Java_frame(thread, false);
// Unbox oop result, e.g. JNIHandles::resolve value.
if (is_reference_type(ret_type)) {
__ resolve_jobject(rax /* value */,
thread /* thread */,
rcx /* tmp */);
}
if (CheckJNICalls) {
// clear_pending_jni_exception_check
__ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
}
if (!is_critical_native) {
// reset handle block
__ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
__ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
// Any exception pending?
__ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
__ jcc(Assembler::notEqual, exception_pending);
}
// no exception, we're almost done
// check that only result value is on FPU stack
__ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
// Fixup floating pointer results so that result looks like a return from a compiled method
if (ret_type == T_FLOAT) {
if (UseSSE >= 1) {
// Pop st0 and store as float and reload into xmm register
__ fstp_s(Address(rbp, -4));
__ movflt(xmm0, Address(rbp, -4));
}
} else if (ret_type == T_DOUBLE) {
if (UseSSE >= 2) {
// Pop st0 and store as double and reload into xmm register
__ fstp_d(Address(rbp, -8));
__ movdbl(xmm0, Address(rbp, -8));
}
}
// Return
__ leave();
__ ret(0);
// Unexpected paths are out of line and go here
// Slow path locking & unlocking
if (method->is_synchronized()) {
// BEGIN Slow path lock
__ bind(slow_path_lock);
// has last_Java_frame setup. No exceptions so do vanilla call not call_VM
// args are (oop obj, BasicLock* lock, JavaThread* thread)
__ push(thread);
__ push(lock_reg);
__ push(obj_reg);
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
__ addptr(rsp, 3*wordSize);
#ifdef ASSERT
{ Label L;
__ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
__ jcc(Assembler::equal, L);
__ stop("no pending exception allowed on exit from monitorenter");
__ bind(L);
}
#endif
__ jmp(lock_done);
// END Slow path lock
// BEGIN Slow path unlock
__ bind(slow_path_unlock);
__ vzeroupper();
// Slow path unlock
if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
save_native_result(masm, ret_type, stack_slots);
}
// Save pending exception around call to VM (which contains an EXCEPTION_MARK)
__ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
__ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
// should be a peal
// +wordSize because of the push above
// args are (oop obj, BasicLock* lock, JavaThread* thread)
__ push(thread);
__ lea(rax, Address(rbp, lock_slot_rbp_offset));
__ push(rax);
__ push(obj_reg);
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
__ addptr(rsp, 3*wordSize);
#ifdef ASSERT
{
Label L;
__ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, L);
__ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
__ bind(L);
}
#endif /* ASSERT */
__ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
restore_native_result(masm, ret_type, stack_slots);
}
__ jmp(unlock_done);
// END Slow path unlock
}
// SLOW PATH Reguard the stack if needed
__ bind(reguard);
__ vzeroupper();
save_native_result(masm, ret_type, stack_slots);
{
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
}
restore_native_result(masm, ret_type, stack_slots);
__ jmp(reguard_done);
// BEGIN EXCEPTION PROCESSING
if (!is_critical_native) {
// Forward the exception
__ bind(exception_pending);
// remove possible return value from FPU register stack
__ empty_FPU_stack();
// pop our frame
__ leave();
// and forward the exception
__ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
}
__ flush();
nmethod *nm = nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
vep_offset,
frame_complete,
stack_slots / VMRegImpl::slots_per_word,
(is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
oop_maps);
if (is_critical_native) {
nm->set_lazy_critical_native(true);
}
return nm;
}
// this function returns the adjust size (in number of words) to a c2i adapter
// activation for use during deoptimization
int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
}
uint SharedRuntime::out_preserve_stack_slots() {
return 0;
}
//------------------------------generate_deopt_blob----------------------------
void SharedRuntime::generate_deopt_blob() {
// allocate space for the code
ResourceMark rm;
// setup code generation tools
// note: the buffer code size must account for StackShadowPages=50
CodeBuffer buffer("deopt_blob", 1536, 1024);
MacroAssembler* masm = new MacroAssembler(&buffer);
int frame_size_in_words;
OopMap* map = NULL;
// Account for the extra args we place on the stack
// by the time we call fetch_unroll_info
const int additional_words = 2; // deopt kind, thread
OopMapSet *oop_maps = new OopMapSet();
// -------------
// This code enters when returning to a de-optimized nmethod. A return
// address has been pushed on the the stack, and return values are in
// registers.
// If we are doing a normal deopt then we were called from the patched
// nmethod from the point we returned to the nmethod. So the return
// address on the stack is wrong by NativeCall::instruction_size
// We will adjust the value to it looks like we have the original return
// address on the stack (like when we eagerly deoptimized).
// In the case of an exception pending with deoptimized then we enter
// with a return address on the stack that points after the call we patched
// into the exception handler. We have the following register state:
// rax,: exception
// rbx,: exception handler
// rdx: throwing pc
// So in this case we simply jam rdx into the useless return address and
// the stack looks just like we want.
//
// At this point we need to de-opt. We save the argument return
// registers. We call the first C routine, fetch_unroll_info(). This
// routine captures the return values and returns a structure which
// describes the current frame size and the sizes of all replacement frames.
// The current frame is compiled code and may contain many inlined
// functions, each with their own JVM state. We pop the current frame, then
// push all the new frames. Then we call the C routine unpack_frames() to
// populate these frames. Finally unpack_frames() returns us the new target
// address. Notice that callee-save registers are BLOWN here; they have
// already been captured in the vframeArray at the time the return PC was
// patched.
address start = __ pc();
Label cont;
// Prolog for non exception case!
// Save everything in sight.
map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
// Normal deoptimization
__ push(Deoptimization::Unpack_deopt);
__ jmp(cont);
int reexecute_offset = __ pc() - start;
// Reexecute case
// return address is the pc describes what bci to do re-execute at
// No need to update map as each call to save_live_registers will produce identical oopmap
(void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
__ push(Deoptimization::Unpack_reexecute);
__ jmp(cont);
int exception_offset = __ pc() - start;
// Prolog for exception case
// all registers are dead at this entry point, except for rax, and
// rdx which contain the exception oop and exception pc
// respectively. Set them in TLS and fall thru to the
// unpack_with_exception_in_tls entry point.
__ get_thread(rdi);
__ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
__ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
int exception_in_tls_offset = __ pc() - start;
// new implementation because exception oop is now passed in JavaThread
// Prolog for exception case
// All registers must be preserved because they might be used by LinearScan
// Exceptiop oop and throwing PC are passed in JavaThread
// tos: stack at point of call to method that threw the exception (i.e. only
// args are on the stack, no return address)
// make room on stack for the return address
// It will be patched later with the throwing pc. The correct value is not
// available now because loading it from memory would destroy registers.
__ push(0);
// Save everything in sight.
// No need to update map as each call to save_live_registers will produce identical oopmap
(void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
// Now it is safe to overwrite any register
// store the correct deoptimization type
__ push(Deoptimization::Unpack_exception);
// load throwing pc from JavaThread and patch it as the return address
// of the current frame. Then clear the field in JavaThread
__ get_thread(rdi);
__ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
__ movptr(Address(rbp, wordSize), rdx);
__ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
#ifdef ASSERT
// verify that there is really an exception oop in JavaThread
__ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
__ verify_oop(rax);
// verify that there is no pending exception
Label no_pending_exception;
__ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
__ testptr(rax, rax);
__ jcc(Assembler::zero, no_pending_exception);
__ stop("must not have pending exception here");
__ bind(no_pending_exception);
#endif
__ bind(cont);
// Compiled code leaves the floating point stack dirty, empty it.
__ empty_FPU_stack();
// Call C code. Need thread and this frame, but NOT official VM entry
// crud. We cannot block on this call, no GC can happen.
__ get_thread(rcx);
__ push(rcx);
// fetch_unroll_info needs to call last_java_frame()
__ set_last_Java_frame(rcx, noreg, noreg, NULL);
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
// Need to have an oopmap that tells fetch_unroll_info where to
// find any register it might need.
oop_maps->add_gc_map( __ pc()-start, map);
// Discard args to fetch_unroll_info
__ pop(rcx);
__ pop(rcx);
__ get_thread(rcx);
__ reset_last_Java_frame(rcx, false);
// Load UnrollBlock into EDI
__ mov(rdi, rax);
// Move the unpack kind to a safe place in the UnrollBlock because
// we are very short of registers
Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
// retrieve the deopt kind from the UnrollBlock.
__ movl(rax, unpack_kind);
Label noException;
__ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending?
__ jcc(Assembler::notEqual, noException);
__ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
__ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
__ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
__ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
__ verify_oop(rax);
// Overwrite the result registers with the exception results.
__ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
__ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
__ bind(noException);
// Stack is back to only having register save data on the stack.
// Now restore the result registers. Everything else is either dead or captured
// in the vframeArray.
RegisterSaver::restore_result_registers(masm);
// Non standard control word may be leaked out through a safepoint blob, and we can
// deopt at a poll point with the non standard control word. However, we should make
// sure the control word is correct after restore_result_registers.
__ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
// All of the register save area has been popped of the stack. Only the
// return address remains.
// Pop all the frames we must move/replace.
//
// Frame picture (youngest to oldest)
// 1: self-frame (no frame link)
// 2: deopting frame (no frame link)
// 3: caller of deopting frame (could be compiled/interpreted).
//
// Note: by leaving the return address of self-frame on the stack
// and using the size of frame 2 to adjust the stack
// when we are done the return to frame 3 will still be on the stack.
// Pop deoptimized frame
__ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
// sp should be pointing at the return address to the caller (3)
// Pick up the initial fp we should save
// restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
__ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
#ifdef ASSERT
// Compilers generate code that bang the stack by as much as the
// interpreter would need. So this stack banging should never
// trigger a fault. Verify that it does not on non product builds.
if (UseStackBanging) {
__ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
__ bang_stack_size(rbx, rcx);
}
#endif
// Load array of frame pcs into ECX
__ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
__ pop(rsi); // trash the old pc
// Load array of frame sizes into ESI
__ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
__ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
__ movl(counter, rbx);
// Now adjust the caller's stack to make up for the extra locals
// but record the original sp so that we can save it in the skeletal interpreter
// frame and the stack walking of interpreter_sender will get the unextended sp
// value and not the "real" sp value.
Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
__ movptr(sp_temp, rsp);
__ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
__ subptr(rsp, rbx);
// Push interpreter frames in a loop
Label loop;
__ bind(loop);
__ movptr(rbx, Address(rsi, 0)); // Load frame size
__ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
__ pushptr(Address(rcx, 0)); // save return address
__ enter(); // save old & set new rbp,
__ subptr(rsp, rbx); // Prolog!
__ movptr(rbx, sp_temp); // sender's sp
// This value is corrected by layout_activation_impl
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
__ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
__ movptr(sp_temp, rsp); // pass to next frame
__ addptr(rsi, wordSize); // Bump array pointer (sizes)
__ addptr(rcx, wordSize); // Bump array pointer (pcs)
__ decrementl(counter); // decrement counter
__ jcc(Assembler::notZero, loop);
__ pushptr(Address(rcx, 0)); // save final return address
// Re-push self-frame
__ enter(); // save old & set new rbp,
// Return address and rbp, are in place
// We'll push additional args later. Just allocate a full sized
// register save area
__ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
// Restore frame locals after moving the frame
__ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
__ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
__ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local
if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
// Set up the args to unpack_frame
__ pushl(unpack_kind); // get the unpack_kind value
__ get_thread(rcx);
__ push(rcx);
// set last_Java_sp, last_Java_fp
__ set_last_Java_frame(rcx, noreg, rbp, NULL);
// Call C code. Need thread but NOT official VM entry
// crud. We cannot block on this call, no GC can happen. Call should
// restore return values to their stack-slots with the new SP.
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
// Set an oopmap for the call site
oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
// rax, contains the return result type
__ push(rax);
__ get_thread(rcx);
__ reset_last_Java_frame(rcx, false);
// Collect return values
__ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
__ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
// Clear floating point stack before returning to interpreter
__ empty_FPU_stack();
// Check if we should push the float or double return value.
Label results_done, yes_double_value;
__ cmpl(Address(rsp, 0), T_DOUBLE);
__ jcc (Assembler::zero, yes_double_value);
__ cmpl(Address(rsp, 0), T_FLOAT);
__ jcc (Assembler::notZero, results_done);
// return float value as expected by interpreter
if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
__ jmp(results_done);
// return double value as expected by interpreter
__ bind(yes_double_value);
if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
__ bind(results_done);
// Pop self-frame.
__ leave(); // Epilog!
// Jump to interpreter
__ ret(0);
// -------------
// make sure all code is generated
masm->flush();
_deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
_deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
}
#ifdef COMPILER2
//------------------------------generate_uncommon_trap_blob--------------------
void SharedRuntime::generate_uncommon_trap_blob() {
// allocate space for the code
ResourceMark rm;
// setup code generation tools
CodeBuffer buffer("uncommon_trap_blob", 512, 512);
MacroAssembler* masm = new MacroAssembler(&buffer);
enum frame_layout {
arg0_off, // thread sp + 0 // Arg location for
arg1_off, // unloaded_class_index sp + 1 // calling C
arg2_off, // exec_mode sp + 2
// The frame sender code expects that rbp will be in the "natural" place and
// will override any oopMap setting for it. We must therefore force the layout
// so that it agrees with the frame sender code.
rbp_off, // callee saved register sp + 3
return_off, // slot for return address sp + 4
framesize
};
address start = __ pc();
if (UseRTMLocking) {
// Abort RTM transaction before possible nmethod deoptimization.
__ xabort(0);
}
// Push self-frame.
__ subptr(rsp, return_off*wordSize); // Epilog!
// rbp, is an implicitly saved callee saved register (i.e. the calling
// convention will save restore it in prolog/epilog) Other than that
// there are no callee save registers no that adapter frames are gone.
__ movptr(Address(rsp, rbp_off*wordSize), rbp);
// Clear the floating point exception stack
__ empty_FPU_stack();
// set last_Java_sp
__ get_thread(rdx);
__ set_last_Java_frame(rdx, noreg, noreg, NULL);
// Call C code. Need thread but NOT official VM entry
// crud. We cannot block on this call, no GC can happen. Call should
// capture callee-saved registers as well as return values.
__ movptr(Address(rsp, arg0_off*wordSize), rdx);
// argument already in ECX
__ movl(Address(rsp, arg1_off*wordSize),rcx);
__ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap);
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
// Set an oopmap for the call site
OopMapSet *oop_maps = new OopMapSet();
OopMap* map = new OopMap( framesize, 0 );
// No oopMap for rbp, it is known implicitly
oop_maps->add_gc_map( __ pc()-start, map);
__ get_thread(rcx);
__ reset_last_Java_frame(rcx, false);
// Load UnrollBlock into EDI
__ movptr(rdi, rax);
#ifdef ASSERT
{ Label L;
__ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
(int32_t)Deoptimization::Unpack_uncommon_trap);
__ jcc(Assembler::equal, L);
__ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
__ bind(L);
}
#endif
// Pop all the frames we must move/replace.
//
// Frame picture (youngest to oldest)
// 1: self-frame (no frame link)
// 2: deopting frame (no frame link)
// 3: caller of deopting frame (could be compiled/interpreted).
// Pop self-frame. We have no frame, and must rely only on EAX and ESP.
__ addptr(rsp,(framesize-1)*wordSize); // Epilog!
// Pop deoptimized frame
/**代码未完, 请加载全部代码(NowJava.com).**/