/*
* Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "rdtsc_x86.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/thread.inline.hpp"
#include "vm_version_ext_x86.hpp"
// The following header contains the implementations of rdtsc()
#include OS_CPU_HEADER_INLINE(os)
static jlong _epoch = 0;
static bool rdtsc_elapsed_counter_enabled = false;
static jlong tsc_frequency = 0;
static jlong set_epoch() {
assert(0 == _epoch, "invariant");
_epoch = os::rdtsc();
return _epoch;
}
// Base loop to estimate ticks frequency for tsc counter from user mode.
// Volatiles and sleep() are used to prevent compiler from applying optimizations.
static void do_time_measurements(volatile jlong& time_base,
volatile jlong& time_fast,
volatile jlong& time_base_elapsed,
volatile jlong& time_fast_elapsed) {
static const unsigned int FT_SLEEP_MILLISECS = 1;
const unsigned int loopcount = 3;
volatile jlong start = 0;
volatile jlong fstart = 0;
volatile jlong end = 0;
volatile jlong fend = 0;
// Figure out the difference between rdtsc and os provided timer.
// base algorithm adopted from JRockit.
for (unsigned int times = 0; times < loopcount; times++) {
start = os::elapsed_counter();
OrderAccess::fence();
fstart = os::rdtsc();
// use sleep to prevent compiler from optimizing
JavaThread::current()->sleep(FT_SLEEP_MILLISECS);
end = os::elapsed_counter();
OrderAccess::fence();
fend = os::rdtsc();
time_base += end - start;
time_fast += fend - fstart;
// basis for calculating the os tick start
// to fast time tick start offset
time_base_elapsed += end;
time_fast_elapsed += (fend - _epoch);
}
time_base /= loopcount;
time_fast /= loopcount;
time_base_elapsed /= loopcount;
time_fast_elapsed /= loopcount;
}
static jlong initialize_frequency() {
assert(0 == tsc_frequency, "invariant");
assert(0 == _epoch, "invariant");
const jlong initial_counter = set_epoch();
if (initial_counter == 0) {
return 0;
}
// os time frequency
static double os_freq = (double)os::elapsed_frequency();
assert(os_freq > 0, "os_elapsed frequency corruption!");
double tsc_freq = .0;
double os_to_tsc_conv_factor = 1.0;
// if platform supports invariant tsc,
// apply higher resolution and granularity for conversion calculations
if (VM_Version_Ext::supports_tscinv_ext()) {
// for invariant tsc platforms, take the maximum qualified cpu frequency
tsc_freq = (double)VM_Version_Ext::maximum_qualified_cpu_frequency();
os_to_tsc_conv_factor = tsc_freq / os_freq;
} else {
// use measurements to estimate
// a conversion factor and the tsc frequency
volatile jlong time_base = 0;
volatile jlong time_fast = 0;
volatile jlong time_base_elapsed = 0;
volatile jlong time_fast_elapsed = 0;
// do measurements to get base data
// on os timer and fast ticks tsc time relation.
do_time_measurements(time_base, time_fast, time_base_elapsed, time_fast_elapsed);
// if invalid measurements, cannot proceed
if (time_fast == 0 || time_base == 0) {
return 0;
}
os_to_tsc_conv_factor = (double)time_fast / (double)time_base;
if (os_to_tsc_conv_factor > 1) {
// estimate on tsc counter frequency
tsc_freq = os_to_tsc_conv_factor * os_freq;
}
}
if ((tsc_freq < 0) || (tsc_freq > 0 && tsc_freq <= os_freq) || (os_to_tsc_conv_factor <= 1)) {
// safer to run with normal os time
tsc_freq = .0;
}
// frequency of the tsc_counter
return (jlong)tsc_freq;
}
static bool initialize_elapsed_counter() {
tsc_frequency = initialize_frequency();
return tsc_frequency != 0 && _epoch != 0;
}
static bool ergonomics() {
const bool invtsc_support = Rdtsc::is_supported();
if (FLAG_IS_DEFAULT(UseFastUnorderedTimeStamps) && invtsc_support) {
FLAG_SET_ERGO(UseFastUnorderedTimeStamps, true);
}
bool ft_enabled = UseFastUnorderedTimeStamps && invtsc_support;
if (!ft_enabled) {
if (UseFastUnorderedTimeStamps && VM_Version::supports_tsc()) {
warning("\nThe hardware does not support invariant tsc (INVTSC) register and/or cannot guarantee tsc synchronization between sockets at startup.\n"\
"Values returned via rdtsc() are not guaranteed to be accurate, esp. when comparing values from cross sockets reads. Enabling UseFastUnorderedTimeStamps on non-invariant tsc hardware should be considered experimental.\n");
ft_enabled = true;
}
}
if (!ft_enabled) {
// Warn if unable to support command-line flag
if (UseFastUnorderedTimeStamps && !VM_Version::supports_tsc()) {
warning("Ignoring UseFastUnorderedTimeStamps, hardware does not support normal tsc");
}
}
return ft_enabled;
}
bool Rdtsc::is_supported() {
return VM_Version_Ext::supports_tscinv_ext();
}
bool Rdtsc::is_elapsed_counter_enabled() {
return rdtsc_elapsed_counter_enabled;
}
jlong Rdtsc::frequency() {
/**代码未完, 请加载全部代码(NowJava.com).**/