/*
* Copyright (c) 2016, Intel Corporation.
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "runtime/stubRoutines.hpp"
#include "macroAssembler_x86.hpp"
// ofs and limit are used for multi-block byte array.
// int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
void MacroAssembler::fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block) {
Label start, done_hash, loop0;
address upper_word_mask = StubRoutines::x86::upper_word_mask_addr();
address shuffle_byte_flip_mask = StubRoutines::x86::shuffle_byte_flip_mask_addr();
bind(start);
movdqu(abcd, Address(state, 0));
pinsrd(e0, Address(state, 16), 3);
movdqu(shuf_mask, ExternalAddress(upper_word_mask)); // 0xFFFFFFFF000000000000000000000000
pand(e0, shuf_mask);
pshufd(abcd, abcd, 0x1B);
movdqu(shuf_mask, ExternalAddress(shuffle_byte_flip_mask)); //0x000102030405060708090a0b0c0d0e0f
bind(loop0);
// Save hash values for addition after rounds
movdqu(Address(rsp, 0), e0);
movdqu(Address(rsp, 16), abcd);
// Rounds 0 - 3
movdqu(msg0, Address(buf, 0));
pshufb(msg0, shuf_mask);
paddd(e0, msg0);
movdqa(e1, abcd);
sha1rnds4(abcd, e0, 0);
// Rounds 4 - 7
movdqu(msg1, Address(buf, 16));
pshufb(msg1, shuf_mask);
sha1nexte(e1, msg1);
movdqa(e0, abcd);
sha1rnds4(abcd, e1, 0);
sha1msg1(msg0, msg1);
// Rounds 8 - 11
movdqu(msg2, Address(buf, 32));
pshufb(msg2, shuf_mask);
sha1nexte(e0, msg2);
movdqa(e1, abcd);
sha1rnds4(abcd, e0, 0);
sha1msg1(msg1, msg2);
pxor(msg0, msg2);
// Rounds 12 - 15
movdqu(msg3, Address(buf, 48));
pshufb(msg3, shuf_mask);
sha1nexte(e1, msg3);
movdqa(e0, abcd);
sha1msg2(msg0, msg3);
sha1rnds4(abcd, e1, 0);
sha1msg1(msg2, msg3);
pxor(msg1, msg3);
// Rounds 16 - 19
sha1nexte(e0, msg0);
movdqa(e1, abcd);
sha1msg2(msg1, msg0);
sha1rnds4(abcd, e0, 0);
sha1msg1(msg3, msg0);
pxor(msg2, msg0);
// Rounds 20 - 23
sha1nexte(e1, msg1);
movdqa(e0, abcd);
sha1msg2(msg2, msg1);
sha1rnds4(abcd, e1, 1);
sha1msg1(msg0, msg1);
pxor(msg3, msg1);
// Rounds 24 - 27
sha1nexte(e0, msg2);
movdqa(e1, abcd);
sha1msg2(msg3, msg2);
sha1rnds4(abcd, e0, 1);
sha1msg1(msg1, msg2);
pxor(msg0, msg2);
// Rounds 28 - 31
sha1nexte(e1, msg3);
movdqa(e0, abcd);
sha1msg2(msg0, msg3);
sha1rnds4(abcd, e1, 1);
sha1msg1(msg2, msg3);
pxor(msg1, msg3);
// Rounds 32 - 35
sha1nexte(e0, msg0);
movdqa(e1, abcd);
sha1msg2(msg1, msg0);
sha1rnds4(abcd, e0, 1);
sha1msg1(msg3, msg0);
pxor(msg2, msg0);
// Rounds 36 - 39
sha1nexte(e1, msg1);
movdqa(e0, abcd);
sha1msg2(msg2, msg1);
sha1rnds4(abcd, e1, 1);
sha1msg1(msg0, msg1);
pxor(msg3, msg1);
// Rounds 40 - 43
sha1nexte(e0, msg2);
movdqa(e1, abcd);
sha1msg2(msg3, msg2);
sha1rnds4(abcd, e0, 2);
sha1msg1(msg1, msg2);
pxor(msg0, msg2);
// Rounds 44 - 47
sha1nexte(e1, msg3);
movdqa(e0, abcd);
sha1msg2(msg0, msg3);
sha1rnds4(abcd, e1, 2);
sha1msg1(msg2, msg3);
pxor(msg1, msg3);
// Rounds 48 - 51
sha1nexte(e0, msg0);
movdqa(e1, abcd);
sha1msg2(msg1, msg0);
sha1rnds4(abcd, e0, 2);
sha1msg1(msg3, msg0);
pxor(msg2, msg0);
// Rounds 52 - 55
sha1nexte(e1, msg1);
movdqa(e0, abcd);
sha1msg2(msg2, msg1);
sha1rnds4(abcd, e1, 2);
sha1msg1(msg0, msg1);
pxor(msg3, msg1);
// Rounds 56 - 59
sha1nexte(e0, msg2);
movdqa(e1, abcd);
sha1msg2(msg3, msg2);
sha1rnds4(abcd, e0, 2);
sha1msg1(msg1, msg2);
pxor(msg0, msg2);
// Rounds 60 - 63
sha1nexte(e1, msg3);
movdqa(e0, abcd);
sha1msg2(msg0, msg3);
sha1rnds4(abcd, e1, 3);
sha1msg1(msg2, msg3);
pxor(msg1, msg3);
// Rounds 64 - 67
sha1nexte(e0, msg0);
movdqa(e1, abcd);
sha1msg2(msg1, msg0);
sha1rnds4(abcd, e0, 3);
sha1msg1(msg3, msg0);
pxor(msg2, msg0);
// Rounds 68 - 71
sha1nexte(e1, msg1);
movdqa(e0, abcd);
sha1msg2(msg2, msg1);
sha1rnds4(abcd, e1, 3);
pxor(msg3, msg1);
// Rounds 72 - 75
sha1nexte(e0, msg2);
movdqa(e1, abcd);
sha1msg2(msg3, msg2);
sha1rnds4(abcd, e0, 3);
// Rounds 76 - 79
sha1nexte(e1, msg3);
movdqa(e0, abcd);
sha1rnds4(abcd, e1, 3);
// add current hash values with previously saved
movdqu(msg0, Address(rsp, 0));
sha1nexte(e0, msg0);
movdqu(msg0, Address(rsp, 16));
paddd(abcd, msg0);
if (multi_block) {
// increment data pointer and loop if more to process
addptr(buf, 64);
addptr(ofs, 64);
cmpptr(ofs, limit);
jcc(Assembler::belowEqual, loop0);
movptr(rax, ofs); //return ofs
}
// write hash values back in the correct order
pshufd(abcd, abcd, 0x1b);
movdqu(Address(state, 0), abcd);
pextrd(Address(state, 16), e0, 3);
bind(done_hash);
}
// xmm0 (msg) is used as an implicit argument to sh256rnds2
// and state0 and state1 can never use xmm0 register.
// ofs and limit are used for multi-block byte array.
// int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
#ifdef _LP64
void MacroAssembler::fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
Register buf, Register state, Register ofs, Register limit, Register rsp,
bool multi_block, XMMRegister shuf_mask) {
#else
void MacroAssembler::fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
Register buf, Register state, Register ofs, Register limit, Register rsp,
bool multi_block) {
#endif
Label start, done_hash, loop0;
address K256 = StubRoutines::x86::k256_addr();
address pshuffle_byte_flip_mask = StubRoutines::x86::pshuffle_byte_flip_mask_addr();
bind(start);
movdqu(state0, Address(state, 0));
movdqu(state1, Address(state, 16));
pshufd(state0, state0, 0xB1);
pshufd(state1, state1, 0x1B);
movdqa(msgtmp4, state0);
palignr(state0, state1, 8);
pblendw(state1, msgtmp4, 0xF0);
#ifdef _LP64
movdqu(shuf_mask, ExternalAddress(pshuffle_byte_flip_mask));
#endif
lea(rax, ExternalAddress(K256));
bind(loop0);
movdqu(Address(rsp, 0), state0);
movdqu(Address(rsp, 16), state1);
// Rounds 0-3
movdqu(msg, Address(buf, 0));
#ifdef _LP64
pshufb(msg, shuf_mask);
#else
pshufb(msg, ExternalAddress(pshuffle_byte_flip_mask));
#endif
movdqa(msgtmp0, msg);
paddd(msg, Address(rax, 0));
sha256rnds2(state1, state0);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
// Rounds 4-7
movdqu(msg, Address(buf, 16));
#ifdef _LP64
pshufb(msg, shuf_mask);
#else
pshufb(msg, ExternalAddress(pshuffle_byte_flip_mask));
#endif
movdqa(msgtmp1, msg);
paddd(msg, Address(rax, 16));
sha256rnds2(state1, state0);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
sha256msg1(msgtmp0, msgtmp1);
// Rounds 8-11
movdqu(msg, Address(buf, 32));
#ifdef _LP64
pshufb(msg, shuf_mask);
#else
pshufb(msg, ExternalAddress(pshuffle_byte_flip_mask));
#endif
movdqa(msgtmp2, msg);
paddd(msg, Address(rax, 32));
sha256rnds2(state1, state0);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
sha256msg1(msgtmp1, msgtmp2);
// Rounds 12-15
movdqu(msg, Address(buf, 48));
#ifdef _LP64
pshufb(msg, shuf_mask);
#else
pshufb(msg, ExternalAddress(pshuffle_byte_flip_mask));
#endif
movdqa(msgtmp3, msg);
paddd(msg, Address(rax, 48));
sha256rnds2(state1, state0);
movdqa(msgtmp4, msgtmp3);
palignr(msgtmp4, msgtmp2, 4);
paddd(msgtmp0, msgtmp4);
sha256msg2(msgtmp0, msgtmp3);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
sha256msg1(msgtmp2, msgtmp3);
// Rounds 16-19
movdqa(msg, msgtmp0);
paddd(msg, Address(rax, 64));
sha256rnds2(state1, state0);
movdqa(msgtmp4, msgtmp0);
palignr(msgtmp4, msgtmp3, 4);
paddd(msgtmp1, msgtmp4);
sha256msg2(msgtmp1, msgtmp0);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
sha256msg1(msgtmp3, msgtmp0);
// Rounds 20-23
movdqa(msg, msgtmp1);
paddd(msg, Address(rax, 80));
sha256rnds2(state1, state0);
movdqa(msgtmp4, msgtmp1);
palignr(msgtmp4, msgtmp0, 4);
paddd(msgtmp2, msgtmp4);
sha256msg2(msgtmp2, msgtmp1);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
sha256msg1(msgtmp0, msgtmp1);
// Rounds 24-27
movdqa(msg, msgtmp2);
paddd(msg, Address(rax, 96));
sha256rnds2(state1, state0);
movdqa(msgtmp4, msgtmp2);
palignr(msgtmp4, msgtmp1, 4);
paddd(msgtmp3, msgtmp4);
sha256msg2(msgtmp3, msgtmp2);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
sha256msg1(msgtmp1, msgtmp2);
// Rounds 28-31
movdqa(msg, msgtmp3);
paddd(msg, Address(rax, 112));
sha256rnds2(state1, state0);
movdqa(msgtmp4, msgtmp3);
palignr(msgtmp4, msgtmp2, 4);
paddd(msgtmp0, msgtmp4);
sha256msg2(msgtmp0, msgtmp3);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
sha256msg1(msgtmp2, msgtmp3);
// Rounds 32-35
movdqa(msg, msgtmp0);
paddd(msg, Address(rax, 128));
sha256rnds2(state1, state0);
movdqa(msgtmp4, msgtmp0);
palignr(msgtmp4, msgtmp3, 4);
paddd(msgtmp1, msgtmp4);
sha256msg2(msgtmp1, msgtmp0);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
sha256msg1(msgtmp3, msgtmp0);
// Rounds 36-39
movdqa(msg, msgtmp1);
paddd(msg, Address(rax, 144));
sha256rnds2(state1, state0);
movdqa(msgtmp4, msgtmp1);
palignr(msgtmp4, msgtmp0, 4);
paddd(msgtmp2, msgtmp4);
sha256msg2(msgtmp2, msgtmp1);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
sha256msg1(msgtmp0, msgtmp1);
// Rounds 40-43
movdqa(msg, msgtmp2);
paddd(msg, Address(rax, 160));
sha256rnds2(state1, state0);
movdqa(msgtmp4, msgtmp2);
palignr(msgtmp4, msgtmp1, 4);
paddd(msgtmp3, msgtmp4);
sha256msg2(msgtmp3, msgtmp2);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
sha256msg1(msgtmp1, msgtmp2);
// Rounds 44-47
movdqa(msg, msgtmp3);
paddd(msg, Address(rax, 176));
sha256rnds2(state1, state0);
movdqa(msgtmp4, msgtmp3);
palignr(msgtmp4, msgtmp2, 4);
paddd(msgtmp0, msgtmp4);
sha256msg2(msgtmp0, msgtmp3);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
sha256msg1(msgtmp2, msgtmp3);
// Rounds 48-51
movdqa(msg, msgtmp0);
paddd(msg, Address(rax, 192));
sha256rnds2(state1, state0);
movdqa(msgtmp4, msgtmp0);
palignr(msgtmp4, msgtmp3, 4);
paddd(msgtmp1, msgtmp4);
sha256msg2(msgtmp1, msgtmp0);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
sha256msg1(msgtmp3, msgtmp0);
// Rounds 52-55
movdqa(msg, msgtmp1);
paddd(msg, Address(rax, 208));
sha256rnds2(state1, state0);
movdqa(msgtmp4, msgtmp1);
palignr(msgtmp4, msgtmp0, 4);
paddd(msgtmp2, msgtmp4);
sha256msg2(msgtmp2, msgtmp1);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
// Rounds 56-59
movdqa(msg, msgtmp2);
paddd(msg, Address(rax, 224));
sha256rnds2(state1, state0);
movdqa(msgtmp4, msgtmp2);
palignr(msgtmp4, msgtmp1, 4);
paddd(msgtmp3, msgtmp4);
sha256msg2(msgtmp3, msgtmp2);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
// Rounds 60-63
movdqa(msg, msgtmp3);
paddd(msg, Address(rax, 240));
sha256rnds2(state1, state0);
pshufd(msg, msg, 0x0E);
sha256rnds2(state0, state1);
movdqu(msg, Address(rsp, 0));
paddd(state0, msg);
movdqu(msg, Address(rsp, 16));
paddd(state1, msg);
if (multi_block) {
// increment data pointer and loop if more to process
addptr(buf, 64);
addptr(ofs, 64);
cmpptr(ofs, limit);
jcc(Assembler::belowEqual, loop0);
movptr(rax, ofs); //return ofs
}
pshufd(state0, state0, 0x1B);
pshufd(state1, state1, 0xB1);
movdqa(msgtmp4, state0);
pblendw(state0, state1, 0xF0);
palignr(state1, msgtmp4, 8);
movdqu(Address(state, 0), state0);
movdqu(Address(state, 16), state1);
bind(done_hash);
}
#ifdef _LP64
/*
The algorithm below is based on Intel publication:
"Fast SHA-256 Implementations on Intel毛 Architecture Processors" by Jim Guilford, Kirk Yap and Vinodh Gopal.
The assembly code was originally provided by Sean Gulley and in many places preserves
the original assembly NAMES and comments to simplify matching Java assembly with its original.
The Java version was substantially redesigned to replace 1200 assembly instruction with
much shorter run-time generator of the same code in memory.
*/
void MacroAssembler::sha256_AVX2_one_round_compute(
Register reg_old_h,
Register reg_a,
Register reg_b,
Register reg_c,
Register reg_d,
Register reg_e,
Register reg_f,
Register reg_g,
Register reg_h,
int iter) {
const Register& reg_y0 = r13;
const Register& reg_y1 = r14;
const Register& reg_y2 = r15;
const Register& reg_y3 = rcx;
const Register& reg_T1 = r12;
//;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND iter ;;;;;;;;;;;;;;;;;;;;;;;;;;;
if (iter%4 > 0) {
addl(reg_old_h, reg_y2); // reg_h = k + w + reg_h + S0 + S1 + CH = t1 + S0; --
}
movl(reg_y2, reg_f); // reg_y2 = reg_f ; CH
rorxd(reg_y0, reg_e, 25); // reg_y0 = reg_e >> 25 ; S1A
rorxd(reg_y1, reg_e, 11); // reg_y1 = reg_e >> 11 ; S1B
xorl(reg_y2, reg_g); // reg_y2 = reg_f^reg_g ; CH
xorl(reg_y0, reg_y1); // reg_y0 = (reg_e>>25) ^ (reg_h>>11) ; S1
rorxd(reg_y1, reg_e, 6); // reg_y1 = (reg_e >> 6) ; S1
andl(reg_y2, reg_e); // reg_y2 = (reg_f^reg_g)®_e ; CH
if (iter%4 > 0) {
addl(reg_old_h, reg_y3); // reg_h = t1 + S0 + MAJ ; --
}
xorl(reg_y0, reg_y1); // reg_y0 = (reg_e>>25) ^ (reg_e>>11) ^ (reg_e>>6) ; S1
rorxd(reg_T1, reg_a, 13); // reg_T1 = reg_a >> 13 ; S0B
xorl(reg_y2, reg_g); // reg_y2 = CH = ((reg_f^reg_g)®_e)^reg_g ; CH
rorxd(reg_y1, reg_a, 22); // reg_y1 = reg_a >> 22 ; S0A
movl(reg_y3, reg_a); // reg_y3 = reg_a ; MAJA
xorl(reg_y1, reg_T1); // reg_y1 = (reg_a>>22) ^ (reg_a>>13) ; S0
rorxd(reg_T1, reg_a, 2); // reg_T1 = (reg_a >> 2) ; S0
addl(reg_h, Address(rsp, rdx, Address::times_1, 4*iter)); // reg_h = k + w + reg_h ; --
orl(reg_y3, reg_c); // reg_y3 = reg_a|reg_c ; MAJA
xorl(reg_y1, reg_T1); // reg_y1 = (reg_a>>22) ^ (reg_a>>13) ^ (reg_a>>2) ; S0
movl(reg_T1, reg_a); // reg_T1 = reg_a ; MAJB
andl(reg_y3, reg_b); // reg_y3 = (reg_a|reg_c)®_b ; MAJA
andl(reg_T1, reg_c); // reg_T1 = reg_a®_c ; MAJB
addl(reg_y2, reg_y0); // reg_y2 = S1 + CH ; --
addl(reg_d, reg_h); // reg_d = k + w + reg_h + reg_d ; --
orl(reg_y3, reg_T1); // reg_y3 = MAJ = (reg_a|reg_c)®_b)|(reg_a®_c) ; MAJ
addl(reg_h, reg_y1); // reg_h = k + w + reg_h + S0 ; --
addl(reg_d, reg_y2); // reg_d = k + w + reg_h + reg_d + S1 + CH = reg_d + t1 ; --
if (iter%4 == 3) {
addl(reg_h, reg_y2); // reg_h = k + w + reg_h + S0 + S1 + CH = t1 + S0; --
addl(reg_h, reg_y3); // reg_h = t1 + S0 + MAJ ; --
}
}
void MacroAssembler::sha256_AVX2_four_rounds_compute_first(int start) {
sha256_AVX2_one_round_compute(rax, rax, rbx, rdi, rsi, r8, r9, r10, r11, start + 0);
sha256_AVX2_one_round_compute(r11, r11, rax, rbx, rdi, rsi, r8, r9, r10, start + 1);
sha256_AVX2_one_round_compute(r10, r10, r11, rax, rbx, rdi, rsi, r8, r9, start + 2);
sha256_AVX2_one_round_compute(r9, r9, r10, r11, rax, rbx, rdi, rsi, r8, start + 3);
}
void MacroAssembler::sha256_AVX2_four_rounds_compute_last(int start) {
sha256_AVX2_one_round_compute(r8, r8, r9, r10, r11, rax, rbx, rdi, rsi, start + 0);
sha256_AVX2_one_round_compute(rsi, rsi, r8, r9, r10, r11, rax, rbx, rdi, start + 1);
sha256_AVX2_one_round_compute(rdi, rdi, rsi, r8, r9, r10, r11, rax, rbx, start + 2);
sha256_AVX2_one_round_compute(rbx, rbx, rdi, rsi, r8, r9, r10, r11, rax, start + 3);
}
void MacroAssembler::sha256_AVX2_one_round_and_sched(
XMMRegister xmm_0, /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
XMMRegister xmm_1, /* ymm5 */ /* full cycle is 16 iterations */
XMMRegister xmm_2, /* ymm6 */
XMMRegister xmm_3, /* ymm7 */
Register reg_a, /* == rax on 0 iteration, then rotate 8 register right on each next iteration */
Register reg_b, /* rbx */ /* full cycle is 8 iterations */
Register reg_c, /* rdi */
Register reg_d, /* rsi */
Register reg_e, /* r8 */
Register reg_f, /* r9d */
Register reg_g, /* r10d */
Register reg_h, /* r11d */
int iter)
{
movl(rcx, reg_a); // rcx = reg_a ; MAJA
rorxd(r13, reg_e, 25); // r13 = reg_e >> 25 ; S1A
rorxd(r14, reg_e, 11); // r14 = reg_e >> 11 ; S1B
addl(reg_h, Address(rsp, rdx, Address::times_1, 4*iter));
orl(rcx, reg_c); // rcx = reg_a|reg_c ; MAJA
movl(r15, reg_f); // r15 = reg_f ; CH
rorxd(r12, reg_a, 13); // r12 = reg_a >> 13 ; S0B
xorl(r13, r14); // r13 = (reg_e>>25) ^ (reg_e>>11) ; S1
xorl(r15, reg_g); // r15 = reg_f^reg_g ; CH
rorxd(r14, reg_e, 6); // r14 = (reg_e >> 6) ; S1
andl(r15, reg_e); // r15 = (reg_f^reg_g)®_e ; CH
xorl(r13, r14); // r13 = (reg_e>>25) ^ (reg_e>>11) ^ (reg_e>>6) ; S1
rorxd(r14, reg_a, 22); // r14 = reg_a >> 22 ; S0A
addl(reg_d, reg_h); // reg_d = k + w + reg_h + reg_d ; --
andl(rcx, reg_b); // rcx = (reg_a|reg_c)®_b ; MAJA
xorl(r14, r12); // r14 = (reg_a>>22) ^ (reg_a>>13) ; S0
rorxd(r12, reg_a, 2); // r12 = (reg_a >> 2) ; S0
xorl(r15, reg_g); // r15 = CH = ((reg_f^reg_g)®_e)^reg_g ; CH
xorl(r14, r12); // r14 = (reg_a>>22) ^ (reg_a>>13) ^ (reg_a>>2) ; S0
movl(r12, reg_a); // r12 = reg_a ; MAJB
andl(r12, reg_c); // r12 = reg_a®_c ; MAJB
addl(r15, r13); // r15 = S1 + CH ; --
orl(rcx, r12); // rcx = MAJ = (reg_a|reg_c)®_b)|(reg_a®_c) ; MAJ
addl(reg_h, r14); // reg_h = k + w + reg_h + S0 ; --
addl(reg_d, r15); // reg_d = k + w + reg_h + reg_d + S1 + CH = reg_d + t1 ; --
addl(reg_h, r15); // reg_h = k + w + reg_h + S0 + S1 + CH = t1 + S0; --
addl(reg_h, rcx); // reg_h = t1 + S0 + MAJ ; --
if (iter%4 == 0) {
vpalignr(xmm0, xmm_3, xmm_2, 4, AVX_256bit); // ymm0 = W[-7]
vpaddd(xmm0, xmm0, xmm_0, AVX_256bit); // ymm0 = W[-7] + W[-16]; y1 = (e >> 6) ; S1
vpalignr(xmm1, xmm_1, xmm_0, 4, AVX_256bit); // ymm1 = W[-15]
vpsrld(xmm2, xmm1, 7, AVX_256bit);
vpslld(xmm3, xmm1, 32-7, AVX_256bit);
vpor(xmm3, xmm3, xmm2, AVX_256bit); // ymm3 = W[-15] ror 7
vpsrld(xmm2, xmm1,18, AVX_256bit);
} else if (iter%4 == 1 ) {
vpsrld(xmm8, xmm1, 3, AVX_256bit); // ymm8 = W[-15] >> 3
vpslld(xmm1, xmm1, 32-18, AVX_256bit);
vpxor(xmm3, xmm3, xmm1, AVX_256bit);
vpxor(xmm3, xmm3, xmm2, AVX_256bit); // ymm3 = W[-15] ror 7 ^ W[-15] ror 18
vpxor(xmm1, xmm3, xmm8, AVX_256bit); // ymm1 = s0
vpshufd(xmm2, xmm_3, 0xFA, AVX_256bit); // 11111010b ; ymm2 = W[-2] {BBAA}
vpaddd(xmm0, xmm0, xmm1, AVX_256bit); // ymm0 = W[-16] + W[-7] + s0
vpsrld(xmm8, xmm2, 10, AVX_256bit); // ymm8 = W[-2] >> 10 {BBAA}
} else if (iter%4 == 2) {
vpsrlq(xmm3, xmm2, 19, AVX_256bit); // ymm3 = W[-2] ror 19 {xBxA}
vpsrlq(xmm2, xmm2, 17, AVX_256bit); // ymm2 = W[-2] ror 17 {xBxA}
vpxor(xmm2, xmm2, xmm3, AVX_256bit);
vpxor(xmm8, xmm8, xmm2, AVX_256bit); // ymm8 = s1 {xBxA}
vpshufb(xmm8, xmm8, xmm10, AVX_256bit); // ymm8 = s1 {00BA}
vpaddd(xmm0, xmm0, xmm8, AVX_256bit); // ymm0 = {..., ..., W[1], W[0]}
vpshufd(xmm2, xmm0, 0x50, AVX_256bit); // 01010000b ; ymm2 = W[-2] {DDCC}
} else if (iter%4 == 3) {
vpsrld(xmm11, xmm2, 10, AVX_256bit); // ymm11 = W[-2] >> 10 {DDCC}
vpsrlq(xmm3, xmm2, 19, AVX_256bit); // ymm3 = W[-2] ror 19 {xDxC}
vpsrlq(xmm2, xmm2, 17, AVX_256bit); // ymm2 = W[-2] ror 17 {xDxC}
vpxor(xmm2, xmm2, xmm3, AVX_256bit);
vpxor(xmm11, xmm11, xmm2, AVX_256bit); // ymm11 = s1 {xDxC}
vpshufb(xmm11, xmm11, xmm12, AVX_256bit); // ymm11 = s1 {DC00}
vpaddd(xmm_0, xmm11, xmm0, AVX_256bit); // xmm_0 = {W[3], W[2], W[1], W[0]}
}
}
void MacroAssembler::addm(int disp, Register r1, Register r2) {
addl(r2, Address(r1, disp));
movl(Address(r1, disp), r2);
}
void MacroAssembler::addmq(int disp, Register r1, Register r2) {
addq(r2, Address(r1, disp));
movq(Address(r1, disp), r2);
}
void MacroAssembler::sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
Register buf, Register state, Register ofs, Register limit, Register rsp,
bool multi_block, XMMRegister shuf_mask) {
Label loop0, loop1, loop2, loop3,
last_block_enter, do_last_block, only_one_block, done_hash,
compute_size, compute_size_end,
compute_size1, compute_size_end1;
address K256_W = StubRoutines::x86::k256_W_addr();
address pshuffle_byte_flip_mask = StubRoutines::x86::pshuffle_byte_flip_mask_addr();
address pshuffle_byte_flip_mask_addr = 0;
const XMMRegister& SHUF_00BA = xmm10; // ymm10: shuffle xBxA -> 00BA
const XMMRegister& SHUF_DC00 = xmm12; // ymm12: shuffle xDxC -> DC00
const XMMRegister& BYTE_FLIP_MASK = xmm13; // ymm13
const XMMRegister& X_BYTE_FLIP_MASK = xmm13; //XMM version of BYTE_FLIP_MASK
const Register& NUM_BLKS = r8; // 3rd arg
const Register& CTX = rdx; // 2nd arg
const Register& INP = rcx; // 1st arg
const Register& c = rdi;
const Register& d = rsi;
const Register& e = r8; // clobbers NUM_BLKS
const Register& y3 = rcx; // clobbers INP
const Register& TBL = rbp;
const Register& SRND = CTX; // SRND is same register as CTX
const Register& a = rax;
const Register& b = rbx;
const Register& f = r9;
const Register& g = r10;
const Register& h = r11;
const Register& T1 = r12;
const Register& y0 = r13;
const Register& y1 = r14;
const Register& y2 = r15;
enum {
_XFER_SIZE = 2*64*4, // 2 blocks, 64 rounds, 4 bytes/round
_INP_END_SIZE = 8,
_INP_SIZE = 8,
_CTX_SIZE = 8,
_RSP_SIZE = 8,
_XFER = 0,
_INP_END = _XFER + _XFER_SIZE,
_INP = _INP_END + _INP_END_SIZE,
_CTX = _INP + _INP_SIZE,
_RSP = _CTX + _CTX_SIZE,
STACK_SIZE = _RSP + _RSP_SIZE
};
#ifndef _WIN64
push(rcx); // linux: this is limit, need at the end
push(rdx); // linux: this is ofs
#else
push(r8); // win64: this is ofs
push(r9); // win64: this is limit, we need them again at the very and
#endif
push(rbx);
#ifdef _WIN64
push(rsi);
push(rdi);
#endif
push(rbp);
push(r12);
push(r13);
push(r14);
push(r15);
movq(rax, rsp);
subq(rsp, STACK_SIZE);
andq(rsp, -32);
movq(Address(rsp, _RSP), rax);
#ifndef _WIN64
// copy linux params to win64 params, therefore the rest of code will be the same for both
movq(r9, rcx);
movq(r8, rdx);
movq(rdx, rsi);
movq(rcx, rdi);
#endif
// setting original assembly ABI
/** message to encrypt in INP */
lea(INP, Address(rcx, 0)); // rcx == message (buf) ;; linux: INP = buf = rdi
/** digest in CTX */
movq(CTX, rdx); // rdx = digest (state) ;; linux: CTX = state = rsi
/** NUM_BLK is the length of message, need to set it from ofs and limit */
if (multi_block) {
// Win64: cannot directly update NUM_BLKS, since NUM_BLKS = ofs = r8
// on entry r8 = ofs
// on exit r8 = NUM_BLKS
xorq(rax, rax);
bind(compute_size);
cmpptr(r8, r9); // assume the original ofs <= limit ;; linux: cmp rcx, rdx
jccb(Assembler::aboveEqual, compute_size_end);
addq(r8, 64); //;; linux: ofs = rdx
addq(rax, 64);
jmpb(compute_size);
bind(compute_size_end);
movq(NUM_BLKS, rax); // NUM_BLK (r8) ;; linux: NUM_BLK = rdx
cmpq(NUM_BLKS, 0);
jcc(Assembler::equal, done_hash);
} else {
xorq(NUM_BLKS, NUM_BLKS);
addq(NUM_BLKS, 64);
}//if (!multi_block)
lea(NUM_BLKS, Address(INP, NUM_BLKS, Address::times_1, -64)); // pointer to the last block
movq(Address(rsp, _INP_END), NUM_BLKS); //
cmpptr(INP, NUM_BLKS); //cmp INP, NUM_BLKS
jcc(Assembler::equal, only_one_block); //je only_one_block
// load initial digest
movl(a, Address(CTX, 4*0));
movl(b, Address(CTX, 4*1));
movl(c, Address(CTX, 4*2));
movl(d, Address(CTX, 4*3));
movl(e, Address(CTX, 4*4));
movl(f, Address(CTX, 4*5));
// load g - r10 after it is used as scratch
movl(h, Address(CTX, 4*7));
pshuffle_byte_flip_mask_addr = pshuffle_byte_flip_mask;
vmovdqu(BYTE_FLIP_MASK, ExternalAddress(pshuffle_byte_flip_mask_addr +0)); //[PSHUFFLE_BYTE_FLIP_MASK wrt rip]
vmovdqu(SHUF_00BA, ExternalAddress(pshuffle_byte_flip_mask_addr + 32)); //[_SHUF_00BA wrt rip]
vmovdqu(SHUF_DC00, ExternalAddress(pshuffle_byte_flip_mask_addr + 64)); //[_SHUF_DC00 wrt rip]
movl(g, Address(CTX, 4*6));
movq(Address(rsp, _CTX), CTX); // store
bind(loop0);
lea(TBL, ExternalAddress(K256_W));
// assume buffers not aligned
// Load first 16 dwords from two blocks
vmovdqu(xmm0, Address(INP, 0*32));
vmovdqu(xmm1, Address(INP, 1*32));
vmovdqu(xmm2, Address(INP, 2*32));
vmovdqu(xmm3, Address(INP, 3*32));
// byte swap data
vpshufb(xmm0, xmm0, BYTE_FLIP_MASK, AVX_256bit);
vpshufb(xmm1, xmm1, BYTE_FLIP_MASK, AVX_256bit);
vpshufb(xmm2, xmm2, BYTE_FLIP_MASK, AVX_256bit);
vpshufb(xmm3, xmm3, BYTE_FLIP_MASK, AVX_256bit);
// transpose data into high/low halves
vperm2i128(xmm4, xmm0, xmm2, 0x20);
vperm2i128(xmm5, xmm0, xmm2, 0x31);
vperm2i128(xmm6, xmm1, xmm3, 0x20);
vperm2i128(xmm7, xmm1, xmm3, 0x31);
bind(last_block_enter);
addq(INP, 64);
movq(Address(rsp, _INP), INP);
//;; schedule 48 input dwords, by doing 3 rounds of 12 each
xorq(SRND, SRND);
align(16);
bind(loop1);
vpaddd(xmm9, xmm4, Address(TBL, SRND, Address::times_1, 0*32), AVX_256bit);
vmovdqu(Address(rsp, SRND, Address::times_1, _XFER + 0*32), xmm9);
sha256_AVX2_one_round_and_sched(xmm4, xmm5, xmm6, xmm7, rax, rbx, rdi, rsi, r8, r9, r10, r11, 0);
sha256_AVX2_one_round_and_sched(xmm4, xmm5, xmm6, xmm7, r11, rax, rbx, rdi, rsi, r8, r9, r10, 1);
sha256_AVX2_one_round_and_sched(xmm4, xmm5, xmm6, xmm7, r10, r11, rax, rbx, rdi, rsi, r8, r9, 2);
sha256_AVX2_one_round_and_sched(xmm4, xmm5, xmm6, xmm7, r9, r10, r11, rax, rbx, rdi, rsi, r8, 3);
vpaddd(xmm9, xmm5, Address(TBL, SRND, Address::times_1, 1*32), AVX_256bit);
vmovdqu(Address(rsp, SRND, Address::times_1, _XFER + 1*32), xmm9);
sha256_AVX2_one_round_and_sched(xmm5, xmm6, xmm7, xmm4, r8, r9, r10, r11, rax, rbx, rdi, rsi, 8+0);
sha256_AVX2_one_round_and_sched(xmm5, xmm6, xmm7, xmm4, rsi, r8, r9, r10, r11, rax, rbx, rdi, 8+1);
sha256_AVX2_one_round_and_sched(xmm5, xmm6, xmm7, xmm4, rdi, rsi, r8, r9, r10, r11, rax, rbx, 8+2);
sha256_AVX2_one_round_and_sched(xmm5, xmm6, xmm7, xmm4, rbx, rdi, rsi, r8, r9, r10, r11, rax, 8+3);
vpaddd(xmm9, xmm6, Address(TBL, SRND, Address::times_1, 2*32), AVX_256bit);
vmovdqu(Address(rsp, SRND, Address::times_1, _XFER + 2*32), xmm9);
sha256_AVX2_one_round_and_sched(xmm6, xmm7, xmm4, xmm5, rax, rbx, rdi, rsi, r8, r9, r10, r11, 16+0);
sha256_AVX2_one_round_and_sched(xmm6, xmm7, xmm4, xmm5, r11, rax, rbx, rdi, rsi, r8, r9, r10, 16+1);
sha256_AVX2_one_round_and_sched(xmm6, xmm7, xmm4, xmm5, r10, r11, rax, rbx, rdi, rsi, r8, r9, 16+2);
sha256_AVX2_one_round_and_sched(xmm6, xmm7, xmm4, xmm5, r9, r10, r11, rax, rbx, rdi, rsi, r8, 16+3);
vpaddd(xmm9, xmm7, Address(TBL, SRND, Address::times_1, 3*32), AVX_256bit);
vmovdqu(Address(rsp, SRND, Address::times_1, _XFER + 3*32), xmm9);
sha256_AVX2_one_round_and_sched(xmm7, xmm4, xmm5, xmm6, r8, r9, r10, r11, rax, rbx, rdi, rsi, 24+0);
sha256_AVX2_one_round_and_sched(xmm7, xmm4, xmm5, xmm6, rsi, r8, r9, r10, r11, rax, rbx, rdi, 24+1);
sha256_AVX2_one_round_and_sched(xmm7, xmm4, xmm5, xmm6, rdi, rsi, r8, r9, r10, r11, rax, rbx, 24+2);
sha256_AVX2_one_round_and_sched(xmm7, xmm4, xmm5, xmm6, rbx, rdi, rsi, r8, r9, r10, r11, rax, 24+3);
addq(SRND, 4*32);
cmpq(SRND, 3 * 4*32);
jcc(Assembler::below, loop1);
bind(loop2);
// Do last 16 rounds with no scheduling
vpaddd(xmm9, xmm4, Address(TBL, SRND, Address::times_1, 0*32), AVX_256bit);
vmovdqu(Address(rsp, SRND, Address::times_1, _XFER + 0*32), xmm9);
sha256_AVX2_four_rounds_compute_first(0);
vpaddd(xmm9, xmm5, Address(TBL, SRND, Address::times_1, 1*32), AVX_256bit);
vmovdqu(Address(rsp, SRND, Address::times_1, _XFER + 1*32), xmm9);
sha256_AVX2_four_rounds_compute_last(0 + 8);
addq(SRND, 2*32);
vmovdqu(xmm4, xmm6);
vmovdqu(xmm5, xmm7);
cmpq(SRND, 4 * 4*32);
jcc(Assembler::below, loop2);
movq(CTX, Address(rsp, _CTX));
movq(INP, Address(rsp, _INP));
addm(4*0, CTX, a);
addm(4*1, CTX, b);
addm(4*2, CTX, c);
addm(4*3, CTX, d);
addm(4*4, CTX, e);
addm(4*5, CTX, f);
addm(4*6, CTX, g);
addm(4*7, CTX, h);
cmpq(INP, Address(rsp, _INP_END));
jcc(Assembler::above, done_hash);
//Do second block using previously scheduled results
xorq(SRND, SRND);
align(16);
bind(loop3);
sha256_AVX2_four_rounds_compute_first(4);
sha256_AVX2_four_rounds_compute_last(4+8);
addq(SRND, 2*32);
cmpq(SRND, 4 * 4*32);
jcc(Assembler::below, loop3);
movq(CTX, Address(rsp, _CTX));
movq(INP, Address(rsp, _INP));
addq(INP, 64);
addm(4*0, CTX, a);
addm(4*1, CTX, b);
addm(4*2, CTX, c);
addm(4*3, CTX, d);
addm(4*4, CTX, e);
addm(4*5, CTX, f);
addm(4*6, CTX, g);
addm(4*7, CTX, h);
cmpq(INP, Address(rsp, _INP_END));
jcc(Assembler::below, loop0);
jccb(Assembler::above, done_hash);
bind(do_last_block);
lea(TBL, ExternalAddress(K256_W));
movdqu(xmm4, Address(INP, 0*16));
movdqu(xmm5, Address(INP, 1*16));
movdqu(xmm6, Address(INP, 2*16));
movdqu(xmm7, Address(INP, 3*16));
vpshufb(xmm4, xmm4, xmm13, AVX_128bit);
vpshufb(xmm5, xmm5, xmm13, AVX_128bit);
vpshufb(xmm6, xmm6, xmm13, AVX_128bit);
vpshufb(xmm7, xmm7, xmm13, AVX_128bit);
jmp(last_block_enter);
bind(only_one_block);
// load initial digest ;; table should be preloaded with following values
movl(a, Address(CTX, 4*0)); // 0x6a09e667
movl(b, Address(CTX, 4*1)); // 0xbb67ae85
movl(c, Address(CTX, 4*2)); // 0x3c6ef372
movl(d, Address(CTX, 4*3)); // 0xa54ff53a
movl(e, Address(CTX, 4*4)); // 0x510e527f
movl(f, Address(CTX, 4*5)); // 0x9b05688c
// load g - r10 after use as scratch
movl(h, Address(CTX, 4*7)); // 0x5be0cd19
pshuffle_byte_flip_mask_addr = pshuffle_byte_flip_mask;
vmovdqu(BYTE_FLIP_MASK, ExternalAddress(pshuffle_byte_flip_mask_addr + 0)); //[PSHUFFLE_BYTE_FLIP_MASK wrt rip]
vmovdqu(SHUF_00BA, ExternalAddress(pshuffle_byte_flip_mask_addr + 32)); //[_SHUF_00BA wrt rip]
vmovdqu(SHUF_DC00, ExternalAddress(pshuffle_byte_flip_mask_addr + 64)); //[_SHUF_DC00 wrt rip]
movl(g, Address(CTX, 4*6)); // 0x1f83d9ab
movq(Address(rsp, _CTX), CTX);
jmpb(do_last_block);
bind(done_hash);
movq(rsp, Address(rsp, _RSP));
pop(r15);
pop(r14);
pop(r13);
pop(r12);
pop(rbp);
#ifdef _WIN64
pop(rdi);
pop(rsi);
#endif
pop(rbx);
#ifdef _WIN64
pop(r9);
pop(r8);
#else
pop(rdx);
pop(rcx);
#endif
if (multi_block) {
#ifdef _WIN64
const Register& limit_end = r9;
const Register& ofs_end = r8;
#else
const Register& limit_end = rcx;
const Register& ofs_end = rdx;
#endif
movq(rax, ofs_end);
bind(compute_size1);
cmpptr(rax, limit_end); // assume the original ofs <= limit
jccb(Assembler::aboveEqual, compute_size_end1);
addq(rax, 64);
jmpb(compute_size1);
bind(compute_size_end1);
}
}
void MacroAssembler::sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c,
Register d, Register e, Register f, Register g, Register h,
int iteration)
{
const Register& y0 = r13;
const Register& y1 = r14;
const Register& y2 = r15;
#ifdef _WIN64
const Register& y3 = rcx;
#else
const Register& y3 = rdi;
#endif
const Register& T1 = r12;
if (iteration % 4 > 0) {
addq(old_h, y2); //h = k + w + h + S0 + S1 + CH = t1 + S0;
}
movq(y2, f); //y2 = f; CH
rorxq(y0, e, 41); //y0 = e >> 41; S1A
rorxq(y1, e, 18); //y1 = e >> 18; S1B
xorq(y2, g); //y2 = f^g; CH
xorq(y0, y1); //y0 = (e >> 41) ^ (e >> 18); S1
rorxq(y1, e, 14); //y1 = (e >> 14); S1
andq(y2, e); //y2 = (f^g)&e; CH
if (iteration % 4 > 0 ) {
addq(old_h, y3); //h = t1 + S0 + MAJ
}
xorq(y0, y1); //y0 = (e >> 41) ^ (e >> 18) ^ (e >> 14); S1
rorxq(T1, a, 34); //T1 = a >> 34; S0B
xorq(y2, g); //y2 = CH = ((f^g)&e) ^g; CH
rorxq(y1, a, 39); //y1 = a >> 39; S0A
movq(y3, a); //y3 = a; MAJA
xorq(y1, T1); //y1 = (a >> 39) ^ (a >> 34); S0
rorxq(T1, a, 28); //T1 = (a >> 28); S0
addq(h, Address(rsp, (8 * iteration))); //h = k + w + h; --
orq(y3, c); //y3 = a | c; MAJA
xorq(y1, T1); //y1 = (a >> 39) ^ (a >> 34) ^ (a >> 28); S0
movq(T1, a); //T1 = a; MAJB
andq(y3, b); //y3 = (a | c)&b; MAJA
andq(T1, c); //T1 = a&c; MAJB
addq(y2, y0); //y2 = S1 + CH; --
addq(d, h); //d = k + w + h + d; --
orq(y3, T1); //y3 = MAJ = (a | c)&b) | (a&c); MAJ
addq(h, y1); //h = k + w + h + S0; --
addq(d, y2); //d = k + w + h + d + S1 + CH = d + t1; --
if (iteration % 4 == 3) {
addq(h, y2); //h = k + w + h + S0 + S1 + CH = t1 + S0; --
addq(h, y3); //h = t1 + S0 + MAJ; --
}
}
void MacroAssembler::sha512_AVX2_one_round_and_schedule(
XMMRegister xmm4, // ymm4
XMMRegister xmm5, // ymm5
XMMRegister xmm6, // ymm6
XMMRegister xmm7, // ymm7
Register a, //rax
Register b, //rbx
Register c, //rdi
Register d, //rsi
Register e, //r8
Register f, //r9
Register g, //r10
Register h, //r11
int iteration)
{
const Register& y0 = r13;
const Register& y1 = r14;
const Register& y2 = r15;
#ifdef _WIN64
const Register& y3 = rcx;
#else
const Register& y3 = rdi;
#endif
const Register& T1 = r12;
if (iteration % 4 == 0) {
// Extract w[t - 7]
// xmm0 = W[-7]
vperm2f128(xmm0, xmm7, xmm6, 3);
vpalignr(xmm0, xmm0, xmm6, 8, AVX_256bit);
// Calculate w[t - 16] + w[t - 7]
vpaddq(xmm0, xmm0, xmm4, AVX_256bit); //xmm0 = W[-7] + W[-16]
// Extract w[t - 15]
//xmm1 = W[-15]
vperm2f128(xmm1, xmm5, xmm4, 3);
vpalignr(xmm1, xmm1, xmm4, 8, AVX_256bit);
// Calculate sigma0
// Calculate w[t - 15] ror 1
vpsrlq(xmm2, xmm1, 1, AVX_256bit);
vpsllq(xmm3, xmm1, (64 - 1), AVX_256bit);
vpor(xmm3, xmm3, xmm2, AVX_256bit); //xmm3 = W[-15] ror 1
// Calculate w[t - 15] shr 7
vpsrlq(xmm8, xmm1, 7, AVX_256bit); //xmm8 = W[-15] >> 7
} else if (iteration % 4 == 1) {
//Calculate w[t - 15] ror 8
vpsrlq(xmm2, xmm1, 8, AVX_256bit);
vpsllq(xmm1, xmm1, (64 - 8), AVX_256bit);
vpor(xmm1, xmm1, xmm2, AVX_256bit); //xmm1 = W[-15] ror 8
//XOR the three components
vpxor(xmm3, xmm3, xmm8, AVX_256bit); //xmm3 = W[-15] ror 1 ^ W[-15] >> 7
vpxor(xmm1, xmm3, xmm1, AVX_256bit); //xmm1 = s0
//Add three components, w[t - 16], w[t - 7] and sigma0
vpaddq(xmm0, xmm0, xmm1, AVX_256bit); //xmm0 = W[-16] + W[-7] + s0
// Move to appropriate lanes for calculating w[16] and w[17]
vperm2f128(xmm4, xmm0, xmm0, 0); //xmm4 = W[-16] + W[-7] + s0{ BABA }
//Move to appropriate lanes for calculating w[18] and w[19]
vpand(xmm0, xmm0, xmm10, AVX_256bit); //xmm0 = W[-16] + W[-7] + s0{ DC00 }
//Calculate w[16] and w[17] in both 128 bit lanes
//Calculate sigma1 for w[16] and w[17] on both 128 bit lanes
vperm2f128(xmm2, xmm7, xmm7, 17); //xmm2 = W[-2] {BABA}
vpsrlq(xmm8, xmm2, 6, AVX_256bit); //xmm8 = W[-2] >> 6 {BABA}
} else if (iteration % 4 == 2) {
vpsrlq(xmm3, xmm2, 19, AVX_256bit); //xmm3 = W[-2] >> 19 {BABA}
vpsllq(xmm1, xmm2, (64 - 19), AVX_256bit); //xmm1 = W[-2] << 19 {BABA}
vpor(xmm3, xmm3, xmm1, AVX_256bit); //xmm3 = W[-2] ror 19 {BABA}
vpxor(xmm8, xmm8, xmm3, AVX_256bit);// xmm8 = W[-2] ror 19 ^ W[-2] >> 6 {BABA}
vpsrlq(xmm3, xmm2, 61, AVX_256bit); //xmm3 = W[-2] >> 61 {BABA}
vpsllq(xmm1, xmm2, (64 - 61), AVX_256bit); //xmm1 = W[-2] << 61 {BABA}
vpor(xmm3, xmm3, xmm1, AVX_256bit); //xmm3 = W[-2] ror 61 {BABA}
vpxor(xmm8, xmm8, xmm3, AVX_256bit); //xmm8 = s1 = (W[-2] ror 19) ^ (W[-2] ror 61) ^ (W[-2] >> 6) { BABA }
//Add sigma1 to the other components to get w[16] and w[17]
vpaddq(xmm4, xmm4, xmm8, AVX_256bit); //xmm4 = { W[1], W[0], W[1], W[0] }
//Calculate sigma1 for w[18] and w[19] for upper 128 bit lane
vpsrlq(xmm8, xmm4, 6, AVX_256bit); //xmm8 = W[-2] >> 6 {DC--}
} else if (iteration % 4 == 3){
vpsrlq(xmm3, xmm4, 19, AVX_256bit); //xmm3 = W[-2] >> 19 {DC--}
vpsllq(xmm1, xmm4, (64 - 19), AVX_256bit); //xmm1 = W[-2] << 19 {DC--}
vpor(xmm3, xmm3, xmm1, AVX_256bit); //xmm3 = W[-2] ror 19 {DC--}
vpxor(xmm8, xmm8, xmm3, AVX_256bit); //xmm8 = W[-2] ror 19 ^ W[-2] >> 6 {DC--}
vpsrlq(xmm3, xmm4, 61, AVX_256bit); //xmm3 = W[-2] >> 61 {DC--}
vpsllq(xmm1, xmm4, (64 - 61), AVX_256bit); //xmm1 = W[-2] << 61 {DC--}
vpor(xmm3, xmm3, xmm1, AVX_256bit); //xmm3 = W[-2] ror 61 {DC--}
vpxor(xmm8, xmm8, xmm3, AVX_256bit); //xmm8 = s1 = (W[-2] ror 19) ^ (W[-2] ror 61) ^ (W[-2] >> 6) { DC-- }
//Add the sigma0 + w[t - 7] + w[t - 16] for w[18] and w[19] to newly calculated sigma1 to get w[18] and w[19]
vpaddq(xmm2, xmm0, xmm8, AVX_256bit); //xmm2 = { W[3], W[2], --, -- }
//Form w[19, w[18], w17], w[16]
vpblendd(xmm4, xmm4, xmm2, 0xF0, AVX_256bit); //xmm4 = { W[3], W[2], W[1], W[0] }
}
movq(y3, a); //y3 = a; MAJA
rorxq(y0, e, 41); // y0 = e >> 41; S1A
rorxq(y1, e, 18); //y1 = e >> 18; S1B
addq(h, Address(rsp, (iteration * 8))); //h = k + w + h; --
orq(y3, c); //y3 = a | c; MAJA
movq(y2, f); //y2 = f; CH
xorq(y2, g); //y2 = f^g; CH
rorxq(T1, a, 34); //T1 = a >> 34; S0B
xorq(y0, y1); //y0 = (e >> 41) ^ (e >> 18); S1
rorxq(y1, e, 14); //y1 = (e >> 14); S1
andq(y2, e); //y2 = (f^g) & e; CH
addq(d, h); //d = k + w + h + d; --
andq(y3, b); //y3 = (a | c)&b; MAJA
xorq(y0, y1); //y0 = (e >> 41) ^ (e >> 18) ^ (e >> 14); S1
rorxq(y1, a, 39); //y1 = a >> 39; S0A
xorq(y1, T1); //y1 = (a >> 39) ^ (a >> 34); S0
rorxq(T1, a, 28); //T1 = (a >> 28); S0
xorq(y2, g); //y2 = CH = ((f^g)&e) ^ g; CH
xorq(y1, T1); //y1 = (a >> 39) ^ (a >> 34) ^ (a >> 28); S0
movq(T1, a); //T1 = a; MAJB
andq(T1, c); //T1 = a&c; MAJB
addq(y2, y0); //y2 = S1 + CH; --
orq(y3, T1); //y3 = MAJ = (a | c)&b) | (a&c); MAJ
addq(h, y1); //h = k + w + h + S0; --
addq(d, y2); //d = k + w + h + d + S1 + CH = d + t1; --
addq(h, y2); //h = k + w + h + S0 + S1 + CH = t1 + S0; --
addq(h, y3); //h = t1 + S0 + MAJ; --
}
void MacroAssembler::sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
Register buf, Register state, Register ofs, Register limit, Register rsp,
bool multi_block, XMMRegister shuf_mask)
{
Label loop0, loop1, loop2, done_hash,
compute_block_size, compute_size,
compute_block_size_end, compute_size_end;
address K512_W = StubRoutines::x86::k512_W_addr();
address pshuffle_byte_flip_mask_sha512 = StubRoutines::x86::pshuffle_byte_flip_mask_addr_sha512();
address pshuffle_byte_flip_mask_addr = 0;
const XMMRegister& XFER = xmm0; // YTMP0
const XMMRegister& BYTE_FLIP_MASK = xmm9; // ymm9
const XMMRegister& YMM_MASK_LO = xmm10; // ymm10
#ifdef _WIN64
const Register& INP = rcx; //1st arg
const Register& CTX = rdx; //2nd arg
const Register& NUM_BLKS = r8; //3rd arg
const Register& c = rdi;
const Register& d = rsi;
const Register& e = r8;
const Register& y3 = rcx;
const Register& offset = r8;
const Register& input_limit = r9;
#else
const Register& INP = rdi; //1st arg
const Register& CTX = rsi; //2nd arg
const Register& NUM_BLKS = rdx; //3rd arg
const Register& c = rcx;
const Register& d = r8;
const Register& e = rdx;
const Register& y3 = rdi;
const Register& offset = rdx;
const Register& input_limit = rcx;
#endif
const Register& TBL = rbp;
const Register& a = rax;
const Register& b = rbx;
const Register& f = r9;
const Register& g = r10;
const Register& h = r11;
//Local variables as defined in assembly file.
enum
{
_XFER_SIZE = 4 * 8, // resq 4 => reserve 4 quadwords. Hence 4 * 8
_SRND_SIZE = 8, // resq 1
_INP_SIZE = 8,
_INP_END_SIZE = 8,
_RSP_SAVE_SIZE = 8, // defined as resq 1
#ifdef _WIN64
_GPR_SAVE_SIZE = 8 * 8, // defined as resq 8
#else
_GPR_SAVE_SIZE = 6 * 8 // resq 6
#endif
};
enum
{
_XFER = 0,
_SRND = _XFER + _XFER_SIZE, // 32
_INP = _SRND + _SRND_SIZE, // 40
_INP_END = _INP + _INP_SIZE, // 48
_RSP = _INP_END + _INP_END_SIZE, // 56
_GPR = _RSP + _RSP_SAVE_SIZE, // 64
_STACK_SIZE = _GPR + _GPR_SAVE_SIZE // 128 for windows and 112 for linux.
};
//Saving offset and limit as it will help with blocksize calculation for multiblock SHA512.
#ifdef _WIN64
push(r8); // win64: this is ofs
push(r9); // win64: this is limit, we need them again at the very end.
#else
push(rdx); // linux : this is ofs, need at the end for multiblock calculation
push(rcx); // linux: This is the limit.
#endif
//Allocate Stack Space
movq(rax, rsp);
subq(rsp, _STACK_SIZE);
andq(rsp, -32);
movq(Address(rsp, _RSP), rax);
//Save GPRs
movq(Address(rsp, _GPR), rbp);
movq(Address(rsp, (_GPR + 8)), rbx);
movq(Address(rsp, (_GPR + 16)), r12);
movq(Address(rsp, (_GPR + 24)), r13);
movq(Address(rsp, (_GPR + 32)), r14);
movq(Address(rsp, (_GPR + 40)), r15);
#ifdef _WIN64
movq(Address(rsp, (_GPR + 48)), rsi);
movq(Address(rsp, (_GPR + 56)), rdi);
#endif
vpblendd(xmm0, xmm0, xmm1, 0xF0, AVX_128bit);
vpblendd(xmm0, xmm0, xmm1, 0xF0, AVX_256bit);
if (multi_block) {
xorq(rax, rax);
bind(compute_block_size);
cmpptr(offset, input_limit); // Assuming that offset is less than limit.
jccb(Assembler::aboveEqual, compute_block_size_end);
addq(offset, 128);
addq(rax, 128);
jmpb(compute_block_size);
bind(compute_block_size_end);
movq(NUM_BLKS, rax);
cmpq(NUM_BLKS, 0);
jcc(Assembler::equal, done_hash);
} else {
xorq(NUM_BLKS, NUM_BLKS); //If single block.
addq(NUM_BLKS, 128);
}
addq(NUM_BLKS, INP); //pointer to end of data
movq(Address(rsp, _INP_END), NUM_BLKS);
//load initial digest
movq(a, Address(CTX, 8 * 0));
movq(b, Address(CTX, 8 * 1));
movq(c, Address(CTX, 8 * 2));
movq(d, Address(CTX, 8 * 3));
movq(e, Address(CTX, 8 * 4));
movq(f, Address(CTX, 8 * 5));
// load g - r10 after it is used as scratch
movq(h, Address(CTX, 8 * 7));
pshuffle_byte_flip_mask_addr = pshuffle_byte_flip_mask_sha512;
vmovdqu(BYTE_FLIP_MASK, ExternalAddress(pshuffle_byte_flip_mask_addr + 0)); //PSHUFFLE_BYTE_FLIP_MASK wrt rip
/**代码未完, 请加载全部代码(NowJava.com).**/