/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateTable.hpp"
#include "memory/universe.hpp"
#include "oops/methodData.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "utilities/macros.hpp"
#define __ _masm->
// Misc helpers
// Do an oop store like *(base + index + offset) = val
// index can be noreg,
static void do_oop_store(InterpreterMacroAssembler* _masm,
Register base,
Register index,
int offset,
Register val,
Register tmp,
DecoratorSet decorators = 0) {
assert(tmp != val && tmp != base && tmp != index, "register collision");
assert(index == noreg || offset == 0, "only one offset");
if (index == noreg) {
__ store_heap_oop(val, base, offset, tmp, decorators);
} else {
__ store_heap_oop(val, base, index, tmp, decorators);
}
}
// Do an oop load like val = *(base + index + offset)
// index can be noreg.
static void do_oop_load(InterpreterMacroAssembler* _masm,
Register base,
Register index,
int offset,
Register dst,
Register tmp,
DecoratorSet decorators = 0) {
assert(tmp != dst && tmp != base && tmp != index, "register collision");
assert(index == noreg || offset == 0, "only one offset");
if (index == noreg) {
__ load_heap_oop(base, offset, dst, tmp, decorators);
} else {
__ load_heap_oop(base, index, dst, tmp, decorators);
}
}
//----------------------------------------------------------------------------------------------------
// Platform-dependent initialization
void TemplateTable::pd_initialize() {
// (none)
}
//----------------------------------------------------------------------------------------------------
// Condition conversion
Assembler::Condition ccNot(TemplateTable::Condition cc) {
switch (cc) {
case TemplateTable::equal : return Assembler::notEqual;
case TemplateTable::not_equal : return Assembler::equal;
case TemplateTable::less : return Assembler::greaterEqual;
case TemplateTable::less_equal : return Assembler::greater;
case TemplateTable::greater : return Assembler::lessEqual;
case TemplateTable::greater_equal: return Assembler::less;
}
ShouldNotReachHere();
return Assembler::zero;
}
//----------------------------------------------------------------------------------------------------
// Miscelaneous helper routines
Address TemplateTable::at_bcp(int offset) {
assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
return Address(Lbcp, offset);
}
void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
int byte_no) {
// With sharing on, may need to test Method* flag.
if (!RewriteBytecodes) return;
Label L_patch_done;
switch (bc) {
case Bytecodes::_fast_aputfield:
case Bytecodes::_fast_bputfield:
case Bytecodes::_fast_zputfield:
case Bytecodes::_fast_cputfield:
case Bytecodes::_fast_dputfield:
case Bytecodes::_fast_fputfield:
case Bytecodes::_fast_iputfield:
case Bytecodes::_fast_lputfield:
case Bytecodes::_fast_sputfield:
{
// We skip bytecode quickening for putfield instructions when
// the put_code written to the constant pool cache is zero.
// This is required so that every execution of this instruction
// calls out to InterpreterRuntime::resolve_get_put to do
// additional, required work.
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
assert(load_bc_into_bc_reg, "we use bc_reg as temp");
__ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
__ set(bc, bc_reg);
__ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done); // don't patch
}
break;
default:
assert(byte_no == -1, "sanity");
if (load_bc_into_bc_reg) {
__ set(bc, bc_reg);
}
}
if (JvmtiExport::can_post_breakpoint()) {
Label L_fast_patch;
__ ldub(at_bcp(0), temp_reg);
__ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
// perform the quickening, slowly, in the bowels of the breakpoint table
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
__ ba_short(L_patch_done);
__ bind(L_fast_patch);
}
#ifdef ASSERT
Bytecodes::Code orig_bytecode = Bytecodes::java_code(bc);
Label L_okay;
__ ldub(at_bcp(0), temp_reg);
__ cmp(temp_reg, orig_bytecode);
__ br(Assembler::equal, false, Assembler::pt, L_okay);
__ delayed()->cmp(temp_reg, bc_reg);
__ br(Assembler::equal, false, Assembler::pt, L_okay);
__ delayed()->nop();
__ stop("patching the wrong bytecode");
__ bind(L_okay);
#endif
// patch bytecode
__ stb(bc_reg, at_bcp(0));
__ bind(L_patch_done);
}
//----------------------------------------------------------------------------------------------------
// Individual instructions
void TemplateTable::nop() {
transition(vtos, vtos);
// nothing to do
}
void TemplateTable::shouldnotreachhere() {
transition(vtos, vtos);
__ stop("shouldnotreachhere bytecode");
}
void TemplateTable::aconst_null() {
transition(vtos, atos);
__ clr(Otos_i);
}
void TemplateTable::iconst(int value) {
transition(vtos, itos);
__ set(value, Otos_i);
}
void TemplateTable::lconst(int value) {
transition(vtos, ltos);
assert(value >= 0, "check this code");
__ set(value, Otos_l);
}
void TemplateTable::fconst(int value) {
transition(vtos, ftos);
static float zero = 0.0, one = 1.0, two = 2.0;
float* p;
switch( value ) {
default: ShouldNotReachHere();
case 0: p = &zero; break;
case 1: p = &one; break;
case 2: p = &two; break;
}
AddressLiteral a(p);
__ sethi(a, G3_scratch);
__ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
}
void TemplateTable::dconst(int value) {
transition(vtos, dtos);
static double zero = 0.0, one = 1.0;
double* p;
switch( value ) {
default: ShouldNotReachHere();
case 0: p = &zero; break;
case 1: p = &one; break;
}
AddressLiteral a(p);
__ sethi(a, G3_scratch);
__ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
}
// %%%%% Should factore most snippet templates across platforms
void TemplateTable::bipush() {
transition(vtos, itos);
__ ldsb( at_bcp(1), Otos_i );
}
void TemplateTable::sipush() {
transition(vtos, itos);
__ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
}
void TemplateTable::ldc(bool wide) {
transition(vtos, vtos);
Label call_ldc, notInt, isString, notString, notClass, notFloat, exit;
if (wide) {
__ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
} else {
__ ldub(Lbcp, 1, O1);
}
__ get_cpool_and_tags(O0, O2);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
// get type from tags
__ add(O2, tags_offset, O2);
__ ldub(O2, O1, O2);
// unresolved class? If so, must resolve
__ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
// unresolved class in error state
__ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
__ cmp(O2, JVM_CONSTANT_Class); // need to call vm to get java mirror of the class
__ brx(Assembler::notEqual, true, Assembler::pt, notClass);
__ delayed()->add(O0, base_offset, O0);
__ bind(call_ldc);
__ set(wide, O1);
call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
__ push(atos);
__ ba(exit);
__ delayed()->nop();
__ bind(notClass);
// __ add(O0, base_offset, O0);
__ sll(O1, LogBytesPerWord, O1);
__ cmp(O2, JVM_CONSTANT_Integer);
__ brx(Assembler::notEqual, true, Assembler::pt, notInt);
__ delayed()->cmp(O2, JVM_CONSTANT_String);
__ ld(O0, O1, Otos_i);
__ push(itos);
__ ba(exit);
__ delayed()->nop();
__ bind(notInt);
// __ cmp(O2, JVM_CONSTANT_String);
__ brx(Assembler::notEqual, true, Assembler::pt, notString);
__ delayed()->cmp(O2, JVM_CONSTANT_Float);
__ bind(isString);
__ stop("string should be rewritten to fast_aldc");
__ ba(exit);
__ delayed()->nop();
__ bind(notString);
//__ cmp(O2, JVM_CONSTANT_Float);
__ brx(Assembler::notEqual, true, Assembler::pt, notFloat);
__ delayed()->nop();
__ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
__ push(ftos);
__ ba(exit);
__ delayed()->nop();
// assume the tag is for condy; if not, the VM runtime will tell us
__ bind(notFloat);
condy_helper(exit);
__ bind(exit);
}
// Fast path for caching oop constants.
// %%% We should use this to handle Class and String constants also.
// %%% It will simplify the ldc/primitive path considerably.
void TemplateTable::fast_aldc(bool wide) {
transition(vtos, atos);
int index_size = wide ? sizeof(u2) : sizeof(u1);
Label resolved;
// We are resolved if the resolved reference cache entry contains a
// non-null object (CallSite, etc.)
assert_different_registers(Otos_i, G3_scratch);
__ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size); // load index => G3_scratch
__ load_resolved_reference_at_index(Otos_i, G3_scratch, Lscratch);
__ tst(Otos_i);
__ br(Assembler::notEqual, false, Assembler::pt, resolved);
__ delayed()->set((int)bytecode(), O1);
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
// first time invocation - must resolve first
__ call_VM(Otos_i, entry, O1);
__ bind(resolved);
{ // Check for the null sentinel.
// If we just called the VM, it already did the mapping for us,
// but it's harmless to retry.
Label notNull;
__ set(ExternalAddress((address)Universe::the_null_sentinel_addr()), G3_scratch);
__ ld_ptr(G3_scratch, 0, G3_scratch);
__ cmp(G3_scratch, Otos_i);
__ br(Assembler::notEqual, true, Assembler::pt, notNull);
__ delayed()->nop();
__ clr(Otos_i); // NULL object reference
__ bind(notNull);
}
// Safe to call with 0 result
__ verify_oop(Otos_i);
}
void TemplateTable::ldc2_w() {
transition(vtos, vtos);
Label notDouble, notLong, exit;
__ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
__ get_cpool_and_tags(O0, O2);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
// get type from tags
__ add(O2, tags_offset, O2);
__ ldub(O2, O1, O2);
__ sll(O1, LogBytesPerWord, O1);
__ add(O0, O1, G3_scratch);
__ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, notDouble);
// A double can be placed at word-aligned locations in the constant pool.
// Check out Conversions.java for an example.
// Also ConstantPool::header_size() is 20, which makes it very difficult
// to double-align double on the constant pool. SG, 11/7/97
__ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
__ push(dtos);
__ ba_short(exit);
__ bind(notDouble);
__ cmp_and_brx_short(O2, JVM_CONSTANT_Long, Assembler::notEqual, Assembler::pt, notLong);
__ ldx(G3_scratch, base_offset, Otos_l);
__ push(ltos);
__ ba_short(exit);
__ bind(notLong);
condy_helper(exit);
__ bind(exit);
}
void TemplateTable::condy_helper(Label& exit) {
Register Robj = Otos_i;
Register Roffset = G4_scratch;
Register Rflags = G1_scratch;
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
__ set((int)bytecode(), O1);
__ call_VM(Robj, entry, O1);
// Get vm_result_2 has flags = (tos, off) using format CPCE::_flags
__ get_vm_result_2(G3_scratch);
// Get offset
__ set((int)ConstantPoolCacheEntry::field_index_mask, Roffset);
__ and3(G3_scratch, Roffset, Roffset);
// compute type
__ srl(G3_scratch, ConstantPoolCacheEntry::tos_state_shift, Rflags);
// Make sure we don't need to mask Rflags after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
switch (bytecode()) {
case Bytecodes::_ldc:
case Bytecodes::_ldc_w:
{
// tos in (itos, ftos, stos, btos, ctos, ztos)
Label notInt, notFloat, notShort, notByte, notChar, notBool;
__ cmp(Rflags, itos);
__ br(Assembler::notEqual, false, Assembler::pt, notInt);
__ delayed()->cmp(Rflags, ftos);
// itos
__ ld(Robj, Roffset, Otos_i);
__ push(itos);
__ ba_short(exit);
__ bind(notInt);
__ br(Assembler::notEqual, false, Assembler::pt, notFloat);
__ delayed()->cmp(Rflags, stos);
// ftos
__ ldf(FloatRegisterImpl::S, Robj, Roffset, Ftos_f);
__ push(ftos);
__ ba_short(exit);
__ bind(notFloat);
__ br(Assembler::notEqual, false, Assembler::pt, notShort);
__ delayed()->cmp(Rflags, btos);
// stos
__ ldsh(Robj, Roffset, Otos_i);
__ push(itos);
__ ba_short(exit);
__ bind(notShort);
__ br(Assembler::notEqual, false, Assembler::pt, notByte);
__ delayed()->cmp(Rflags, ctos);
// btos
__ ldsb(Robj, Roffset, Otos_i);
__ push(itos);
__ ba_short(exit);
__ bind(notByte);
__ br(Assembler::notEqual, false, Assembler::pt, notChar);
__ delayed()->cmp(Rflags, ztos);
// ctos
__ lduh(Robj, Roffset, Otos_i);
__ push(itos);
__ ba_short(exit);
__ bind(notChar);
__ br(Assembler::notEqual, false, Assembler::pt, notBool);
__ delayed()->nop();
// ztos
__ ldsb(Robj, Roffset, Otos_i);
__ push(itos);
__ ba_short(exit);
__ bind(notBool);
break;
}
case Bytecodes::_ldc2_w:
{
Label notLong, notDouble;
__ cmp(Rflags, ltos);
__ br(Assembler::notEqual, false, Assembler::pt, notLong);
__ delayed()->cmp(Rflags, dtos);
// ltos
// load must be atomic
__ ld_long(Robj, Roffset, Otos_l);
__ push(ltos);
__ ba_short(exit);
__ bind(notLong);
__ br(Assembler::notEqual, false, Assembler::pt, notDouble);
__ delayed()->nop();
// dtos
__ ldf(FloatRegisterImpl::D, Robj, Roffset, Ftos_d);
__ push(dtos);
__ ba_short(exit);
__ bind(notDouble);
break;
}
default:
ShouldNotReachHere();
}
__ stop("bad ldc/condy");
__ bind(exit);
}
void TemplateTable::locals_index(Register reg, int offset) {
__ ldub( at_bcp(offset), reg );
}
void TemplateTable::locals_index_wide(Register reg) {
// offset is 2, not 1, because Lbcp points to wide prefix code
__ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
}
void TemplateTable::iload() {
iload_internal();
}
void TemplateTable::nofast_iload() {
iload_internal(may_not_rewrite);
}
void TemplateTable::iload_internal(RewriteControl rc) {
transition(vtos, itos);
// Rewrite iload,iload pair into fast_iload2
// iload,caload pair into fast_icaload
if (RewriteFrequentPairs && rc == may_rewrite) {
Label rewrite, done;
// get next byte
__ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
// if _iload, wait to rewrite to iload2. We only want to rewrite the
// last two iloads in a pair. Comparing against fast_iload means that
// the next bytecode is neither an iload or a caload, and therefore
// an iload pair.
__ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
__ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
__ br(Assembler::equal, false, Assembler::pn, rewrite);
__ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
__ cmp(G3_scratch, (int)Bytecodes::_caload);
__ br(Assembler::equal, false, Assembler::pn, rewrite);
__ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
__ set(Bytecodes::_fast_iload, G4_scratch); // don't check again
// rewrite
// G4_scratch: fast bytecode
__ bind(rewrite);
patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
__ bind(done);
}
// Get the local value into tos
locals_index(G3_scratch);
__ access_local_int( G3_scratch, Otos_i );
}
void TemplateTable::fast_iload2() {
transition(vtos, itos);
locals_index(G3_scratch);
__ access_local_int( G3_scratch, Otos_i );
__ push_i();
locals_index(G3_scratch, 3); // get next bytecode's local index.
__ access_local_int( G3_scratch, Otos_i );
}
void TemplateTable::fast_iload() {
transition(vtos, itos);
locals_index(G3_scratch);
__ access_local_int( G3_scratch, Otos_i );
}
void TemplateTable::lload() {
transition(vtos, ltos);
locals_index(G3_scratch);
__ access_local_long( G3_scratch, Otos_l );
}
void TemplateTable::fload() {
transition(vtos, ftos);
locals_index(G3_scratch);
__ access_local_float( G3_scratch, Ftos_f );
}
void TemplateTable::dload() {
transition(vtos, dtos);
locals_index(G3_scratch);
__ access_local_double( G3_scratch, Ftos_d );
}
void TemplateTable::aload() {
transition(vtos, atos);
locals_index(G3_scratch);
__ access_local_ptr( G3_scratch, Otos_i);
}
void TemplateTable::wide_iload() {
transition(vtos, itos);
locals_index_wide(G3_scratch);
__ access_local_int( G3_scratch, Otos_i );
}
void TemplateTable::wide_lload() {
transition(vtos, ltos);
locals_index_wide(G3_scratch);
__ access_local_long( G3_scratch, Otos_l );
}
void TemplateTable::wide_fload() {
transition(vtos, ftos);
locals_index_wide(G3_scratch);
__ access_local_float( G3_scratch, Ftos_f );
}
void TemplateTable::wide_dload() {
transition(vtos, dtos);
locals_index_wide(G3_scratch);
__ access_local_double( G3_scratch, Ftos_d );
}
void TemplateTable::wide_aload() {
transition(vtos, atos);
locals_index_wide(G3_scratch);
__ access_local_ptr( G3_scratch, Otos_i );
__ verify_oop(Otos_i);
}
void TemplateTable::iaload() {
transition(itos, itos);
// Otos_i: index
// tos: array
__ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
__ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
}
void TemplateTable::laload() {
transition(itos, ltos);
// Otos_i: index
// O2: array
__ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
__ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
}
void TemplateTable::faload() {
transition(itos, ftos);
// Otos_i: index
// O2: array
__ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
__ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
}
void TemplateTable::daload() {
transition(itos, dtos);
// Otos_i: index
// O2: array
__ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
__ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
}
void TemplateTable::aaload() {
transition(itos, atos);
// Otos_i: index
// tos: array
__ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
do_oop_load(_masm,
O3,
noreg,
arrayOopDesc::base_offset_in_bytes(T_OBJECT),
Otos_i,
G3_scratch,
IS_ARRAY);
__ verify_oop(Otos_i);
}
void TemplateTable::baload() {
transition(itos, itos);
// Otos_i: index
// tos: array
__ index_check(O2, Otos_i, 0, G3_scratch, O3);
__ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
}
void TemplateTable::caload() {
transition(itos, itos);
// Otos_i: index
// tos: array
__ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
__ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
}
void TemplateTable::fast_icaload() {
transition(vtos, itos);
// Otos_i: index
// tos: array
locals_index(G3_scratch);
__ access_local_int( G3_scratch, Otos_i );
__ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
__ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
}
void TemplateTable::saload() {
transition(itos, itos);
// Otos_i: index
// tos: array
__ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
__ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
}
void TemplateTable::iload(int n) {
transition(vtos, itos);
__ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
}
void TemplateTable::lload(int n) {
transition(vtos, ltos);
assert(n+1 < Argument::n_register_parameters, "would need more code");
__ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
}
void TemplateTable::fload(int n) {
transition(vtos, ftos);
assert(n < Argument::n_register_parameters, "would need more code");
__ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n), Ftos_f );
}
void TemplateTable::dload(int n) {
transition(vtos, dtos);
FloatRegister dst = Ftos_d;
__ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
}
void TemplateTable::aload(int n) {
transition(vtos, atos);
__ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
}
void TemplateTable::aload_0() {
aload_0_internal();
}
void TemplateTable::nofast_aload_0() {
aload_0_internal(may_not_rewrite);
}
void TemplateTable::aload_0_internal(RewriteControl rc) {
transition(vtos, atos);
// According to bytecode histograms, the pairs:
//
// _aload_0, _fast_igetfield (itos)
// _aload_0, _fast_agetfield (atos)
// _aload_0, _fast_fgetfield (ftos)
//
// occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
// bytecode checks the next bytecode and then rewrites the current
// bytecode into a pair bytecode; otherwise it rewrites the current
// bytecode into _fast_aload_0 that doesn't do the pair check anymore.
//
if (RewriteFrequentPairs && rc == may_rewrite) {
Label rewrite, done;
// get next byte
__ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
// if _getfield then wait with rewrite
__ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
// if _igetfield then rewrite to _fast_iaccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
__ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
__ br(Assembler::equal, false, Assembler::pn, rewrite);
__ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
// if _agetfield then rewrite to _fast_aaccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
__ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
__ br(Assembler::equal, false, Assembler::pn, rewrite);
__ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
// if _fgetfield then rewrite to _fast_faccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
__ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
__ br(Assembler::equal, false, Assembler::pn, rewrite);
__ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
// else rewrite to _fast_aload0
assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
__ set(Bytecodes::_fast_aload_0, G4_scratch);
// rewrite
// G4_scratch: fast bytecode
__ bind(rewrite);
patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
__ bind(done);
}
// Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
aload(0);
}
void TemplateTable::istore() {
transition(itos, vtos);
locals_index(G3_scratch);
__ store_local_int( G3_scratch, Otos_i );
}
void TemplateTable::lstore() {
transition(ltos, vtos);
locals_index(G3_scratch);
__ store_local_long( G3_scratch, Otos_l );
}
void TemplateTable::fstore() {
transition(ftos, vtos);
locals_index(G3_scratch);
__ store_local_float( G3_scratch, Ftos_f );
}
void TemplateTable::dstore() {
transition(dtos, vtos);
locals_index(G3_scratch);
__ store_local_double( G3_scratch, Ftos_d );
}
void TemplateTable::astore() {
transition(vtos, vtos);
__ load_ptr(0, Otos_i);
__ inc(Lesp, Interpreter::stackElementSize);
__ verify_oop_or_return_address(Otos_i, G3_scratch);
locals_index(G3_scratch);
__ store_local_ptr(G3_scratch, Otos_i);
}
void TemplateTable::wide_istore() {
transition(vtos, vtos);
__ pop_i();
locals_index_wide(G3_scratch);
__ store_local_int( G3_scratch, Otos_i );
}
void TemplateTable::wide_lstore() {
transition(vtos, vtos);
__ pop_l();
locals_index_wide(G3_scratch);
__ store_local_long( G3_scratch, Otos_l );
}
void TemplateTable::wide_fstore() {
transition(vtos, vtos);
__ pop_f();
locals_index_wide(G3_scratch);
__ store_local_float( G3_scratch, Ftos_f );
}
void TemplateTable::wide_dstore() {
transition(vtos, vtos);
__ pop_d();
locals_index_wide(G3_scratch);
__ store_local_double( G3_scratch, Ftos_d );
}
void TemplateTable::wide_astore() {
transition(vtos, vtos);
__ load_ptr(0, Otos_i);
__ inc(Lesp, Interpreter::stackElementSize);
__ verify_oop_or_return_address(Otos_i, G3_scratch);
locals_index_wide(G3_scratch);
__ store_local_ptr(G3_scratch, Otos_i);
}
void TemplateTable::iastore() {
transition(itos, vtos);
__ pop_i(O2); // index
// Otos_i: val
// O3: array
__ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
__ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
}
void TemplateTable::lastore() {
transition(ltos, vtos);
__ pop_i(O2); // index
// Otos_l: val
// O3: array
__ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
__ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
}
void TemplateTable::fastore() {
transition(ftos, vtos);
__ pop_i(O2); // index
// Ftos_f: val
// O3: array
__ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
__ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
}
void TemplateTable::dastore() {
transition(dtos, vtos);
__ pop_i(O2); // index
// Fos_d: val
// O3: array
__ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
__ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
}
void TemplateTable::aastore() {
Label store_ok, is_null, done;
transition(vtos, vtos);
__ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
__ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2); // get index
__ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3); // get array
// Otos_i: val
// O2: index
// O3: array
__ verify_oop(Otos_i);
__ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
// do array store check - check for NULL value first
__ br_null_short( Otos_i, Assembler::pn, is_null );
__ load_klass(O3, O4); // get array klass
__ load_klass(Otos_i, O5); // get value klass
// do fast instanceof cache test
__ ld_ptr(O4, in_bytes(ObjArrayKlass::element_klass_offset()), O4);
assert(Otos_i == O0, "just checking");
// Otos_i: value
// O1: addr - offset
// O2: index
// O3: array
// O4: array element klass
// O5: value klass
// Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
// Generate a fast subtype check. Branch to store_ok if no
// failure. Throw if failure.
__ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
// Not a subtype; so must throw exception
__ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
// Store is OK.
__ bind(store_ok);
do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, IS_ARRAY);
__ ba(done);
__ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
__ bind(is_null);
do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, IS_ARRAY);
__ profile_null_seen(G3_scratch);
__ inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
__ bind(done);
}
void TemplateTable::bastore() {
transition(itos, vtos);
__ pop_i(O2); // index
// Otos_i: val
// O2: index
// O3: array
__ index_check(O3, O2, 0, G3_scratch, O2);
// Need to check whether array is boolean or byte
// since both types share the bastore bytecode.
__ load_klass(O3, G4_scratch);
__ ld(G4_scratch, in_bytes(Klass::layout_helper_offset()), G4_scratch);
__ set(Klass::layout_helper_boolean_diffbit(), G3_scratch);
__ andcc(G3_scratch, G4_scratch, G0);
Label L_skip;
__ br(Assembler::zero, false, Assembler::pn, L_skip);
__ delayed()->nop();
__ and3(Otos_i, 1, Otos_i); // if it is a T_BOOLEAN array, mask the stored value to 0/1
__ bind(L_skip);
__ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
}
void TemplateTable::castore() {
transition(itos, vtos);
__ pop_i(O2); // index
// Otos_i: val
// O3: array
__ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
__ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
}
void TemplateTable::sastore() {
// %%%%% Factor across platform
castore();
}
void TemplateTable::istore(int n) {
transition(itos, vtos);
__ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
}
void TemplateTable::lstore(int n) {
transition(ltos, vtos);
assert(n+1 < Argument::n_register_parameters, "only handle register cases");
__ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
}
void TemplateTable::fstore(int n) {
transition(ftos, vtos);
assert(n < Argument::n_register_parameters, "only handle register cases");
__ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
}
void TemplateTable::dstore(int n) {
transition(dtos, vtos);
FloatRegister src = Ftos_d;
__ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
}
void TemplateTable::astore(int n) {
transition(vtos, vtos);
__ load_ptr(0, Otos_i);
__ inc(Lesp, Interpreter::stackElementSize);
__ verify_oop_or_return_address(Otos_i, G3_scratch);
__ store_local_ptr(n, Otos_i);
}
void TemplateTable::pop() {
transition(vtos, vtos);
__ inc(Lesp, Interpreter::stackElementSize);
}
void TemplateTable::pop2() {
transition(vtos, vtos);
__ inc(Lesp, 2 * Interpreter::stackElementSize);
}
void TemplateTable::dup() {
transition(vtos, vtos);
// stack: ..., a
// load a and tag
__ load_ptr(0, Otos_i);
__ push_ptr(Otos_i);
// stack: ..., a, a
}
void TemplateTable::dup_x1() {
transition(vtos, vtos);
// stack: ..., a, b
__ load_ptr( 1, G3_scratch); // get a
__ load_ptr( 0, Otos_l1); // get b
__ store_ptr(1, Otos_l1); // put b
__ store_ptr(0, G3_scratch); // put a - like swap
__ push_ptr(Otos_l1); // push b
// stack: ..., b, a, b
}
void TemplateTable::dup_x2() {
transition(vtos, vtos);
// stack: ..., a, b, c
// get c and push on stack, reuse registers
__ load_ptr( 0, G3_scratch); // get c
__ push_ptr(G3_scratch); // push c with tag
// stack: ..., a, b, c, c (c in reg) (Lesp - 4)
// (stack offsets n+1 now)
__ load_ptr( 3, Otos_l1); // get a
__ store_ptr(3, G3_scratch); // put c at 3
// stack: ..., c, b, c, c (a in reg)
__ load_ptr( 2, G3_scratch); // get b
__ store_ptr(2, Otos_l1); // put a at 2
// stack: ..., c, a, c, c (b in reg)
__ store_ptr(1, G3_scratch); // put b at 1
// stack: ..., c, a, b, c
}
void TemplateTable::dup2() {
transition(vtos, vtos);
__ load_ptr(1, G3_scratch); // get a
__ load_ptr(0, Otos_l1); // get b
__ push_ptr(G3_scratch); // push a
__ push_ptr(Otos_l1); // push b
// stack: ..., a, b, a, b
}
void TemplateTable::dup2_x1() {
transition(vtos, vtos);
// stack: ..., a, b, c
__ load_ptr( 1, Lscratch); // get b
__ load_ptr( 2, Otos_l1); // get a
__ store_ptr(2, Lscratch); // put b at a
// stack: ..., b, b, c
__ load_ptr( 0, G3_scratch); // get c
__ store_ptr(1, G3_scratch); // put c at b
// stack: ..., b, c, c
__ store_ptr(0, Otos_l1); // put a at c
// stack: ..., b, c, a
__ push_ptr(Lscratch); // push b
__ push_ptr(G3_scratch); // push c
// stack: ..., b, c, a, b, c
}
// The spec says that these types can be a mixture of category 1 (1 word)
// types and/or category 2 types (long and doubles)
void TemplateTable::dup2_x2() {
transition(vtos, vtos);
// stack: ..., a, b, c, d
__ load_ptr( 1, Lscratch); // get c
__ load_ptr( 3, Otos_l1); // get a
__ store_ptr(3, Lscratch); // put c at 3
__ store_ptr(1, Otos_l1); // put a at 1
// stack: ..., c, b, a, d
__ load_ptr( 2, G3_scratch); // get b
__ load_ptr( 0, Otos_l1); // get d
__ store_ptr(0, G3_scratch); // put b at 0
__ store_ptr(2, Otos_l1); // put d at 2
// stack: ..., c, d, a, b
__ push_ptr(Lscratch); // push c
__ push_ptr(Otos_l1); // push d
// stack: ..., c, d, a, b, c, d
}
void TemplateTable::swap() {
transition(vtos, vtos);
// stack: ..., a, b
__ load_ptr( 1, G3_scratch); // get a
__ load_ptr( 0, Otos_l1); // get b
__ store_ptr(0, G3_scratch); // put b
__ store_ptr(1, Otos_l1); // put a
// stack: ..., b, a
}
void TemplateTable::iop2(Operation op) {
transition(itos, itos);
__ pop_i(O1);
switch (op) {
case add: __ add(O1, Otos_i, Otos_i); break;
case sub: __ sub(O1, Otos_i, Otos_i); break;
// %%%%% Mul may not exist: better to call .mul?
case mul: __ smul(O1, Otos_i, Otos_i); break;
case _and: __ and3(O1, Otos_i, Otos_i); break;
case _or: __ or3(O1, Otos_i, Otos_i); break;
case _xor: __ xor3(O1, Otos_i, Otos_i); break;
case shl: __ sll(O1, Otos_i, Otos_i); break;
case shr: __ sra(O1, Otos_i, Otos_i); break;
case ushr: __ srl(O1, Otos_i, Otos_i); break;
default: ShouldNotReachHere();
}
}
void TemplateTable::lop2(Operation op) {
transition(ltos, ltos);
__ pop_l(O2);
switch (op) {
case add: __ add(O2, Otos_l, Otos_l); break;
case sub: __ sub(O2, Otos_l, Otos_l); break;
case _and: __ and3(O2, Otos_l, Otos_l); break;
case _or: __ or3(O2, Otos_l, Otos_l); break;
case _xor: __ xor3(O2, Otos_l, Otos_l); break;
default: ShouldNotReachHere();
}
}
void TemplateTable::idiv() {
// %%%%% Later: ForSPARC/V7 call .sdiv library routine,
// %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
transition(itos, itos);
__ pop_i(O1); // get 1st op
// Y contains upper 32 bits of result, set it to 0 or all ones
__ wry(G0);
__ mov(~0, G3_scratch);
__ tst(O1);
Label neg;
__ br(Assembler::negative, true, Assembler::pn, neg);
__ delayed()->wry(G3_scratch);
__ bind(neg);
Label ok;
__ tst(Otos_i);
__ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
const int min_int = 0x80000000;
Label regular;
__ cmp(Otos_i, -1);
__ br(Assembler::notEqual, false, Assembler::pt, regular);
// Don't put set in delay slot
// Set will turn into multiple instructions in 64 bit mode
__ delayed()->nop();
__ set(min_int, G4_scratch);
Label done;
__ cmp(O1, G4_scratch);
__ br(Assembler::equal, true, Assembler::pt, done);
__ delayed()->mov(O1, Otos_i); // (mov only executed if branch taken)
__ bind(regular);
__ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
__ bind(done);
}
void TemplateTable::irem() {
transition(itos, itos);
__ mov(Otos_i, O2); // save divisor
idiv(); // %%%% Hack: exploits fact that idiv leaves dividend in O1
__ smul(Otos_i, O2, Otos_i);
__ sub(O1, Otos_i, Otos_i);
}
void TemplateTable::lmul() {
transition(ltos, ltos);
__ pop_l(O2);
__ mulx(Otos_l, O2, Otos_l);
}
void TemplateTable::ldiv() {
transition(ltos, ltos);
// check for zero
__ pop_l(O2);
__ tst(Otos_l);
__ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
__ sdivx(O2, Otos_l, Otos_l);
}
void TemplateTable::lrem() {
transition(ltos, ltos);
// check for zero
__ pop_l(O2);
__ tst(Otos_l);
__ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
__ sdivx(O2, Otos_l, Otos_l2);
__ mulx (Otos_l2, Otos_l, Otos_l2);
__ sub (O2, Otos_l2, Otos_l);
}
void TemplateTable::lshl() {
transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
__ pop_l(O2); // shift value in O2, O3
__ sllx(O2, Otos_i, Otos_l);
}
void TemplateTable::lshr() {
transition(itos, ltos); // %%%% see lshl comment
__ pop_l(O2); // shift value in O2, O3
__ srax(O2, Otos_i, Otos_l);
}
void TemplateTable::lushr() {
transition(itos, ltos); // %%%% see lshl comment
__ pop_l(O2); // shift value in O2, O3
__ srlx(O2, Otos_i, Otos_l);
}
void TemplateTable::fop2(Operation op) {
transition(ftos, ftos);
switch (op) {
case add: __ pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f); break;
case sub: __ pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f); break;
case mul: __ pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f); break;
case div: __ pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f); break;
case rem:
assert(Ftos_f == F0, "just checking");
// LP64 calling conventions use F1, F3 for passing 2 floats
__ pop_f(F1);
__ fmov(FloatRegisterImpl::S, Ftos_f, F3);
__ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
assert( Ftos_f == F0, "fix this code" );
break;
default: ShouldNotReachHere();
}
}
void TemplateTable::dop2(Operation op) {
transition(dtos, dtos);
switch (op) {
case add: __ pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d); break;
case sub: __ pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d); break;
case mul: __ pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d); break;
case div: __ pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d); break;
case rem:
// Pass arguments in D0, D2
__ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
__ pop_d( F0 );
__ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
assert( Ftos_d == F0, "fix this code" );
break;
default: ShouldNotReachHere();
}
}
void TemplateTable::ineg() {
transition(itos, itos);
__ neg(Otos_i);
}
void TemplateTable::lneg() {
transition(ltos, ltos);
__ sub(G0, Otos_l, Otos_l);
}
void TemplateTable::fneg() {
transition(ftos, ftos);
__ fneg(FloatRegisterImpl::S, Ftos_f, Ftos_f);
}
void TemplateTable::dneg() {
transition(dtos, dtos);
__ fneg(FloatRegisterImpl::D, Ftos_f, Ftos_f);
}
void TemplateTable::iinc() {
transition(vtos, vtos);
locals_index(G3_scratch);
__ ldsb(Lbcp, 2, O2); // load constant
__ access_local_int(G3_scratch, Otos_i);
__ add(Otos_i, O2, Otos_i);
__ st(Otos_i, G3_scratch, 0); // access_local_int puts E.A. in G3_scratch
}
void TemplateTable::wide_iinc() {
transition(vtos, vtos);
locals_index_wide(G3_scratch);
__ get_2_byte_integer_at_bcp( 4, O2, O3, InterpreterMacroAssembler::Signed);
__ access_local_int(G3_scratch, Otos_i);
__ add(Otos_i, O3, Otos_i);
__ st(Otos_i, G3_scratch, 0); // access_local_int puts E.A. in G3_scratch
}
void TemplateTable::convert() {
// %%%%% Factor this first part accross platforms
#ifdef ASSERT
TosState tos_in = ilgl;
TosState tos_out = ilgl;
switch (bytecode()) {
case Bytecodes::_i2l: // fall through
case Bytecodes::_i2f: // fall through
case Bytecodes::_i2d: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_in = itos; break;
case Bytecodes::_l2i: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_l2d: tos_in = ltos; break;
case Bytecodes::_f2i: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_f2d: tos_in = ftos; break;
case Bytecodes::_d2i: // fall through
case Bytecodes::_d2l: // fall through
case Bytecodes::_d2f: tos_in = dtos; break;
default : ShouldNotReachHere();
}
switch (bytecode()) {
case Bytecodes::_l2i: // fall through
case Bytecodes::_f2i: // fall through
case Bytecodes::_d2i: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_out = itos; break;
case Bytecodes::_i2l: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_d2l: tos_out = ltos; break;
case Bytecodes::_i2f: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_d2f: tos_out = ftos; break;
case Bytecodes::_i2d: // fall through
case Bytecodes::_l2d: // fall through
case Bytecodes::_f2d: tos_out = dtos; break;
default : ShouldNotReachHere();
}
transition(tos_in, tos_out);
#endif
// Conversion
Label done;
switch (bytecode()) {
case Bytecodes::_i2l:
// Sign extend the 32 bits
__ sra ( Otos_i, 0, Otos_l );
break;
case Bytecodes::_i2f:
__ st(Otos_i, __ d_tmp );
__ ldf(FloatRegisterImpl::S, __ d_tmp, F0);
__ fitof(FloatRegisterImpl::S, F0, Ftos_f);
break;
case Bytecodes::_i2d:
__ st(Otos_i, __ d_tmp);
__ ldf(FloatRegisterImpl::S, __ d_tmp, F0);
__ fitof(FloatRegisterImpl::D, F0, Ftos_f);
break;
case Bytecodes::_i2b:
__ sll(Otos_i, 24, Otos_i);
__ sra(Otos_i, 24, Otos_i);
break;
case Bytecodes::_i2c:
__ sll(Otos_i, 16, Otos_i);
__ srl(Otos_i, 16, Otos_i);
break;
case Bytecodes::_i2s:
__ sll(Otos_i, 16, Otos_i);
__ sra(Otos_i, 16, Otos_i);
break;
case Bytecodes::_l2i:
// Sign-extend into the high 32 bits
__ sra(Otos_l, 0, Otos_i);
break;
case Bytecodes::_l2f:
case Bytecodes::_l2d:
__ st_long(Otos_l, __ d_tmp);
__ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
if (bytecode() == Bytecodes::_l2f) {
__ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
} else {
__ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
}
break;
case Bytecodes::_f2i: {
Label isNaN;
// result must be 0 if value is NaN; test by comparing value to itself
__ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
__ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
__ delayed()->clr(Otos_i); // NaN
__ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
__ stf(FloatRegisterImpl::S, F30, __ d_tmp);
__ ld(__ d_tmp, Otos_i);
__ bind(isNaN);
}
break;
case Bytecodes::_f2l:
// must uncache tos
__ push_f();
__ pop_f(F1);
__ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
break;
case Bytecodes::_f2d:
__ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
break;
case Bytecodes::_d2i:
case Bytecodes::_d2l:
// must uncache tos
__ push_d();
// LP64 calling conventions pass first double arg in D0
__ pop_d( Ftos_d );
__ call_VM_leaf(Lscratch,
bytecode() == Bytecodes::_d2i
? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
: CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
break;
case Bytecodes::_d2f:
__ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
break;
default: ShouldNotReachHere();
}
__ bind(done);
}
void TemplateTable::lcmp() {
transition(ltos, itos);
__ pop_l(O1); // pop off value 1, value 2 is in O0
__ lcmp( O1, Otos_l, Otos_i );
}
void TemplateTable::float_cmp(bool is_float, int unordered_result) {
if (is_float) __ pop_f(F2);
else __ pop_d(F2);
assert(Ftos_f == F0 && Ftos_d == F0, "alias checking:");
__ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
}
void TemplateTable::branch(bool is_jsr, bool is_wide) {
// Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
__ verify_thread();
const Register O2_bumped_count = O2;
__ profile_taken_branch(G3_scratch, O2_bumped_count);
// get (wide) offset to O1_disp
const Register O1_disp = O1;
if (is_wide) __ get_4_byte_integer_at_bcp( 1, G4_scratch, O1_disp, InterpreterMacroAssembler::set_CC);
else __ get_2_byte_integer_at_bcp( 1, G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
// Handle all the JSR stuff here, then exit.
// It's much shorter and cleaner than intermingling with the
// non-JSR normal-branch stuff occurring below.
if( is_jsr ) {
// compute return address as bci in Otos_i
__ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
__ sub(Lbcp, G3_scratch, G3_scratch);
__ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
// Bump Lbcp to target of JSR
__ add(Lbcp, O1_disp, Lbcp);
// Push returnAddress for "ret" on stack
__ push_ptr(Otos_i);
// And away we go!
__ dispatch_next(vtos, 0, true);
return;
}
// Normal (non-jsr) branch handling
// Save the current Lbcp
const Register l_cur_bcp = Lscratch;
__ mov( Lbcp, l_cur_bcp );
bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
if ( increment_invocation_counter_for_backward_branches ) {
Label Lforward;
// check branch direction
__ br( Assembler::positive, false, Assembler::pn, Lforward );
// Bump bytecode pointer by displacement (take the branch)
__ delayed()->add( O1_disp, Lbcp, Lbcp ); // add to bc addr
const Register G3_method_counters = G3_scratch;
__ get_method_counters(Lmethod, G3_method_counters, Lforward);
if (TieredCompilation) {
Label Lno_mdo, Loverflow;
int increment = InvocationCounter::count_increment;
if (ProfileInterpreter) {
// If no method data exists, go to profile_continue.
__ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
__ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
// Increment backedge counter in the MDO
Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
Address mask(G4_scratch, in_bytes(MethodData::backedge_mask_offset()));
__ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0,
(UseOnStackReplacement ? Assembler::notZero : Assembler::always), &Lforward);
__ ba_short(Loverflow);
}
// If there's no MDO, increment counter in MethodCounters*
__ bind(Lno_mdo);
Address backedge_counter(G3_method_counters,
in_bytes(MethodCounters::backedge_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
Address mask(G3_method_counters, in_bytes(MethodCounters::backedge_mask_offset()));
__ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0,
(UseOnStackReplacement ? Assembler::notZero : Assembler::always), &Lforward);
__ bind(Loverflow);
// notify point for loop, pass branch bytecode
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp);
// Was an OSR adapter generated?
// O0 = osr nmethod
__ br_null_short(O0, Assembler::pn, Lforward);
// Has the nmethod been invalidated already?
__ ldub(O0, nmethod::state_offset(), O2);
__ cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, Lforward);
// migrate the interpreter frame off of the stack
__ mov(G2_thread, L7);
// save nmethod
__ mov(O0, L6);
__ set_last_Java_frame(SP, noreg);
__ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
__ reset_last_Java_frame();
__ mov(L7, G2_thread);
// move OSR nmethod to I1
__ mov(L6, I1);
// OSR buffer to I0
__ mov(O0, I0);
// remove the interpreter frame
__ restore(I5_savedSP, 0, SP);
// Jump to the osr code.
__ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
__ jmp(O2, G0);
__ delayed()->nop();
} else { // not TieredCompilation
// Update Backedge branch separately from invocations
const Register G4_invoke_ctr = G4;
__ increment_backedge_counter(G3_method_counters, G4_invoke_ctr, G1_scratch);
if (ProfileInterpreter) {
__ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_method_counters, G1_scratch, Lforward);
if (UseOnStackReplacement) {
__ test_backedge_count_for_osr(O2_bumped_count, G3_method_counters, l_cur_bcp, G1_scratch);
}
} else {
if (UseOnStackReplacement) {
__ test_backedge_count_for_osr(G4_invoke_ctr, G3_method_counters, l_cur_bcp, G1_scratch);
}
}
}
__ bind(Lforward);
} else
// Bump bytecode pointer by displacement (take the branch)
__ add( O1_disp, Lbcp, Lbcp );// add to bc addr
// continue with bytecode @ target
// %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
// %%%%% and changing dispatch_next to dispatch_only
__ dispatch_next(vtos, 0, true);
}
// Note Condition in argument is TemplateTable::Condition
// arg scope is within class scope
void TemplateTable::if_0cmp(Condition cc) {
// no pointers, integer only!
transition(itos, vtos);
// assume branch is more often taken than not (loops use backward branches)
__ cmp( Otos_i, 0);
__ if_cmp(ccNot(cc), false);
}
void TemplateTable::if_icmp(Condition cc) {
transition(itos, vtos);
__ pop_i(O1);
__ cmp(O1, Otos_i);
__ if_cmp(ccNot(cc), false);
}
void TemplateTable::if_nullcmp(Condition cc) {
transition(atos, vtos);
__ tst(Otos_i);
__ if_cmp(ccNot(cc), true);
}
void TemplateTable::if_acmp(Condition cc) {
transition(atos, vtos);
__ pop_ptr(O1);
__ verify_oop(O1);
__ verify_oop(Otos_i);
__ cmp(O1, Otos_i);
__ if_cmp(ccNot(cc), true);
}
void TemplateTable::ret() {
transition(vtos, vtos);
locals_index(G3_scratch);
__ access_local_returnAddress(G3_scratch, Otos_i);
// Otos_i contains the bci, compute the bcp from that
#ifdef ASSERT
// jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
// the result. The return address (really a BCI) was stored with an
// 'astore' because JVM specs claim it's a pointer-sized thing. Hence in
// the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
// loaded value.
{ Label zzz ;
__ set (65536, G3_scratch) ;
__ cmp (Otos_i, G3_scratch) ;
__ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
__ delayed()->nop();
__ stop("BCI is in the wrong register half?");
__ bind (zzz) ;
}
#endif
__ profile_ret(vtos, Otos_i, G4_scratch);
__ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
__ add(G3_scratch, Otos_i, G3_scratch);
__ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
__ dispatch_next(vtos, 0, true);
}
void TemplateTable::wide_ret() {
transition(vtos, vtos);
locals_index_wide(G3_scratch);
__ access_local_returnAddress(G3_scratch, Otos_i);
// Otos_i contains the bci, compute the bcp from that
__ profile_ret(vtos, Otos_i, G4_scratch);
__ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
__ add(G3_scratch, Otos_i, G3_scratch);
__ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
__ dispatch_next(vtos, 0, true);
}
void TemplateTable::tableswitch() {
transition(itos, vtos);
Label default_case, continue_execution;
// align bcp
__ add(Lbcp, BytesPerInt, O1);
__ and3(O1, -BytesPerInt, O1);
// load lo, hi
__ ld(O1, 1 * BytesPerInt, O2); // Low Byte
__ ld(O1, 2 * BytesPerInt, O3); // High Byte
// Sign extend the 32 bits
__ sra ( Otos_i, 0, Otos_i );
// check against lo & hi
__ cmp( Otos_i, O2);
__ br( Assembler::less, false, Assembler::pn, default_case);
__ delayed()->cmp( Otos_i, O3 );
__ br( Assembler::greater, false, Assembler::pn, default_case);
// lookup dispatch offset
__ delayed()->sub(Otos_i, O2, O2);
__ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
__ sll(O2, LogBytesPerInt, O2);
__ add(O2, 3 * BytesPerInt, O2);
__ ba(continue_execution);
__ delayed()->ld(O1, O2, O2);
// handle default
__ bind(default_case);
__ profile_switch_default(O3);
__ ld(O1, 0, O2); // get default offset
// continue execution
__ bind(continue_execution);
__ add(Lbcp, O2, Lbcp);
__ dispatch_next(vtos, 0, true);
}
void TemplateTable::lookupswitch() {
transition(itos, itos);
__ stop("lookupswitch bytecode should have been rewritten");
}
void TemplateTable::fast_linearswitch() {
transition(itos, vtos);
Label loop_entry, loop, found, continue_execution;
// align bcp
__ add(Lbcp, BytesPerInt, O1);
__ and3(O1, -BytesPerInt, O1);
// set counter
__ ld(O1, BytesPerInt, O2);
__ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
__ add(O1, 2 * BytesPerInt, O3); // set first pair addr
__ ba(loop_entry);
__ delayed()->add(O3, O2, O2); // counter now points past last pair
// table search
__ bind(loop);
__ cmp(O4, Otos_i);
__ br(Assembler::equal, true, Assembler::pn, found);
__ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
__ inc(O3, 2 * BytesPerInt);
__ bind(loop_entry);
__ cmp(O2, O3);
__ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
__ delayed()->ld(O3, 0, O4);
// default case
__ ld(O1, 0, O4); // get default offset
if (ProfileInterpreter) {
__ profile_switch_default(O3);
__ ba_short(continue_execution);
}
// entry found -> get offset
__ bind(found);
if (ProfileInterpreter) {
__ sub(O3, O1, O3);
__ sub(O3, 2*BytesPerInt, O3);
__ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
__ profile_switch_case(O3, O1, O2, G3_scratch);
__ bind(continue_execution);
}
__ add(Lbcp, O4, Lbcp);
__ dispatch_next(vtos, 0, true);
}
void TemplateTable::fast_binaryswitch() {
transition(itos, vtos);
// Implementation using the following core algorithm: (copied from Intel)
//
// int binary_search(int key, LookupswitchPair* array, int n) {
// // Binary search according to "Methodik des Programmierens" by
// // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
// int i = 0;
// int j = n;
// while (i+1 < j) {
// // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
// // with Q: for all i: 0 <= i < n: key < a[i]
// // where a stands for the array and assuming that the (inexisting)
// // element a[n] is infinitely big.
// int h = (i + j) >> 1;
// // i < h < j
// if (key < array[h].fast_match()) {
// j = h;
// } else {
// i = h;
// }
// }
// // R: a[i] <= key < a[i+1] or Q
// // (i.e., if key is within array, i is the correct index)
// return i;
// }
// register allocation
assert(Otos_i == O0, "alias checking");
const Register Rkey = Otos_i; // already set (tosca)
const Register Rarray = O1;
const Register Ri = O2;
const Register Rj = O3;
const Register Rh = O4;
const Register Rscratch = O5;
const int log_entry_size = 3;
const int entry_size = 1 << log_entry_size;
Label found;
// Find Array start
__ add(Lbcp, 3 * BytesPerInt, Rarray);
__ and3(Rarray, -BytesPerInt, Rarray);
// initialize i & j (in delay slot)
__ clr( Ri );
// and start
Label entry;
__ ba(entry);
__ delayed()->ld( Rarray, -BytesPerInt, Rj);
// (Rj is already in the native byte-ordering.)
// binary search loop
{ Label loop;
__ bind( loop );
// int h = (i + j) >> 1;
__ sra( Rh, 1, Rh );
// if (key < array[h].fast_match()) {
// j = h;
// } else {
// i = h;
// }
__ sll( Rh, log_entry_size, Rscratch );
__ ld( Rarray, Rscratch, Rscratch );
// (Rscratch is already in the native byte-ordering.)
__ cmp( Rkey, Rscratch );
__ movcc( Assembler::less, false, Assembler::icc, Rh, Rj ); // j = h if (key < array[h].fast_match())
__ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri ); // i = h if (key >= array[h].fast_match())
// while (i+1 < j)
__ bind( entry );
__ add( Ri, 1, Rscratch );
__ cmp(Rscratch, Rj);
__ br( Assembler::less, true, Assembler::pt, loop );
__ delayed()->add( Ri, Rj, Rh ); // start h = i + j >> 1;
}
// end of binary search, result index is i (must check again!)
Label default_case;
Label continue_execution;
if (ProfileInterpreter) {
__ mov( Ri, Rh ); // Save index in i for profiling
}
__ sll( Ri, log_entry_size, Ri );
__ ld( Rarray, Ri, Rscratch );
// (Rscratch is already in the native byte-ordering.)
__ cmp( Rkey, Rscratch );
__ br( Assembler::notEqual, true, Assembler::pn, default_case );
__ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
// entry found -> j = offset
__ inc( Ri, BytesPerInt );
__ profile_switch_case(Rh, Rj, Rscratch, Rkey);
__ ld( Rarray, Ri, Rj );
// (Rj is already in the native byte-ordering.)
if (ProfileInterpreter) {
__ ba_short(continue_execution);
}
__ bind(default_case); // fall through (if not profiling)
__ profile_switch_default(Ri);
__ bind(continue_execution);
__ add( Lbcp, Rj, Lbcp );
__ dispatch_next(vtos, 0, true);
}
void TemplateTable::_return(TosState state) {
transition(state, state);
assert(_desc->calls_vm(), "inconsistent calls_vm information");
if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
assert(state == vtos, "only valid state");
__ mov(G0, G3_scratch);
__ access_local_ptr(G3_scratch, Otos_i);
__ load_klass(Otos_i, O2);
__ set(JVM_ACC_HAS_FINALIZER, G3);
__ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
__ andcc(G3, O2, G0);
Label skip_register_finalizer;
__ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
__ delayed()->nop();
// Call out to do finalizer registration
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
__ bind(skip_register_finalizer);
}
if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) {
Label no_safepoint;
__ ldx(Address(G2_thread, Thread::polling_page_offset()), G3_scratch, 0);
__ btst(SafepointMechanism::poll_bit(), G3_scratch);
__ br(Assembler::zero, false, Assembler::pt, no_safepoint);
__ delayed()->nop();
__ push(state);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
__ pop(state);
__ bind(no_safepoint);
}
// Narrow result if state is itos but result type is smaller.
// Need to narrow in the return bytecode rather than in generate_return_entry
// since compiled code callers expect the result to already be narrowed.
if (state == itos) {
__ narrow(Otos_i);
}
__ remove_activation(state, /* throw_monitor_exception */ true);
// The caller's SP was adjusted upon method entry to accomodate
// the callee's non-argument locals. Undo that adjustment.
__ ret(); // return to caller
__ delayed()->restore(I5_savedSP, G0, SP);
}
// ----------------------------------------------------------------------------
// Volatile variables demand their effects be made known to all CPU's in
// order. Store buffers on most chips allow reads & writes to reorder; the
// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
// memory barrier (i.e., it's not sufficient that the interpreter does not
// reorder volatile references, the hardware also must not reorder them).
//
// According to the new Java Memory Model (JMM):
// (1) All volatiles are serialized wrt to each other.
// ALSO reads & writes act as aquire & release, so:
// (2) A read cannot let unrelated NON-volatile memory refs that happen after
// the read float up to before the read. It's OK for non-volatile memory refs
// that happen before the volatile read to float down below it.
// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
// that happen BEFORE the write float down to after the write. It's OK for
// non-volatile memory refs that happen after the volatile write to float up
// before it.
//
// We only put in barriers around volatile refs (they are expensive), not
// _between_ memory refs (that would require us to track the flavor of the
// previous memory refs). Requirements (2) and (3) require some barriers
// before volatile stores and after volatile loads. These nearly cover
// requirement (1) but miss the volatile-store-volatile-load case. This final
// case is placed after volatile-stores although it could just as well go
// before volatile-loads.
void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
// Helper function to insert a is-volatile test and memory barrier
// All current sparc implementations run in TSO, needing only StoreLoad
if ((order_constraint & Assembler::StoreLoad) == 0) return;
__ membar( order_constraint );
}
// ----------------------------------------------------------------------------
void TemplateTable::resolve_cache_and_index(int byte_no,
Register Rcache,
Register index,
size_t index_size) {
// Depends on cpCacheOop layout!
Label resolved;
Bytecodes::Code code = bytecode();
switch (code) {
case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
}
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
__ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
__ cmp(Lbyte_code, code); // have we resolved this bytecode?
__ br(Assembler::equal, false, Assembler::pt, resolved);
__ delayed()->set(code, O1);
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
// first time invocation - must resolve first
__ call_VM(noreg, entry, O1);
// Update registers with resolved info
__ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
__ bind(resolved);
}
void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
Register method,
Register itable_index,
Register flags,
bool is_invokevirtual,
bool is_invokevfinal,
bool is_invokedynamic) {
// Uses both G3_scratch and G4_scratch
Register cache = G3_scratch;
Register index = G4_scratch;
assert_different_registers(cache, method, itable_index);
// determine constant pool cache field offsets
assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
const int method_offset = in_bytes(
ConstantPoolCache::base_offset() +
((byte_no == f2_byte)
? ConstantPoolCacheEntry::f2_offset()
: ConstantPoolCacheEntry::f1_offset()
)
);
const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::flags_offset());
// access constant pool cache fields
const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::f2_offset());
if (is_invokevfinal) {
__ get_cache_and_index_at_bcp(cache, index, 1);
__ ld_ptr(Address(cache, method_offset), method);
} else {
size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
resolve_cache_and_index(byte_no, cache, index, index_size);
__ ld_ptr(Address(cache, method_offset), method);
}
if (itable_index != noreg) {
// pick up itable or appendix index from f2 also:
__ ld_ptr(Address(cache, index_offset), itable_index);
}
__ ld_ptr(Address(cache, flags_offset), flags);
}
// The Rcache register must be set before call
void TemplateTable::load_field_cp_cache_entry(Register Robj,
Register Rcache,
Register index,
Register Roffset,
Register Rflags,
bool is_static) {
assert_different_registers(Rcache, Rflags, Roffset, Lscratch);
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
__ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
__ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
if (is_static) {
__ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ ld_ptr( Robj, mirror_offset, Robj);
__ resolve_oop_handle(Robj, Lscratch);
}
}
// The registers Rcache and index expected to be set before call.
// Correct values of the Rcache and index registers are preserved.
void TemplateTable::jvmti_post_field_access(Register Rcache,
Register index,
bool is_static,
bool has_tos) {
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
if (JvmtiExport::can_post_field_access()) {
// Check to see if a field access watch has been set before we take
// the time to call into the VM.
Label Label1;
assert_different_registers(Rcache, index, G1_scratch);
AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
__ load_contents(get_field_access_count_addr, G1_scratch);
__ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
__ add(Rcache, in_bytes(cp_base_offset), Rcache);
if (is_static) {
__ clr(Otos_i);
} else {
if (has_tos) {
// save object pointer before call_VM() clobbers it
__ push_ptr(Otos_i); // put object on tos where GC wants it.
} else {
// Load top of stack (do not pop the value off the stack);
__ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
}
__ verify_oop(Otos_i);
}
// Otos_i: object pointer or NULL if static
// Rcache: cache entry pointer
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
Otos_i, Rcache);
if (!is_static && has_tos) {
__ pop_ptr(Otos_i); // restore object pointer
__ verify_oop(Otos_i);
}
__ get_cache_and_index_at_bcp(Rcache, index, 1);
__ bind(Label1);
}
}
void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
transition(vtos, vtos);
Register Rcache = G3_scratch;
Register index = G4_scratch;
Register Rclass = Rcache;
Register Roffset= G4_scratch;
Register Rflags = G1_scratch;
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
jvmti_post_field_access(Rcache, index, is_static, false);
load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
if (!is_static) {
pop_and_check_object(Rclass);
} else {
__ verify_oop(Rclass);
}
Label exit;
Assembler::Membar_mask_bits membar_bits =
Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
if (__ membar_has_effect(membar_bits)) {
// Get volatile flag
__ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
__ and3(Rflags, Lscratch, Lscratch);
}
Label checkVolatile;
// compute field type
Label notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj;
__ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
// Make sure we don't need to mask Rflags after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
// Check atos before itos for getstatic, more likely (in Queens at least)
__ cmp(Rflags, atos);
__ br(Assembler::notEqual, false, Assembler::pt, notObj);
__ delayed() ->cmp(Rflags, itos);
// atos
do_oop_load(_masm, Rclass, Roffset, 0, Otos_i, noreg);
__ verify_oop(Otos_i);
__ push(atos);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
__ bind(notObj);
// cmp(Rflags, itos);
__ br(Assembler::notEqual, false, Assembler::pt, notInt);
__ delayed() ->cmp(Rflags, ltos);
// itos
__ ld(Rclass, Roffset, Otos_i);
__ push(itos);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
__ bind(notInt);
// cmp(Rflags, ltos);
__ br(Assembler::notEqual, false, Assembler::pt, notLong);
__ delayed() ->cmp(Rflags, btos);
// ltos
// load must be atomic
__ ld_long(Rclass, Roffset, Otos_l);
__ push(ltos);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
__ bind(notLong);
// cmp(Rflags, btos);
__ br(Assembler::notEqual, false, Assembler::pt, notByte);
__ delayed() ->cmp(Rflags, ztos);
// btos
__ ldsb(Rclass, Roffset, Otos_i);
__ push(itos);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
__ bind(notByte);
// cmp(Rflags, ztos);
__ br(Assembler::notEqual, false, Assembler::pt, notBool);
__ delayed() ->cmp(Rflags, ctos);
// ztos
__ ldsb(Rclass, Roffset, Otos_i);
__ push(itos);
if (!is_static && rc == may_rewrite) {
// use btos rewriting, no truncating to t/f bit is needed for getfield.
patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
__ bind(notBool);
// cmp(Rflags, ctos);
__ br(Assembler::notEqual, false, Assembler::pt, notChar);
__ delayed() ->cmp(Rflags, stos);
// ctos
__ lduh(Rclass, Roffset, Otos_i);
__ push(itos);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
__ bind(notChar);
// cmp(Rflags, stos);
__ br(Assembler::notEqual, false, Assembler::pt, notShort);
__ delayed() ->cmp(Rflags, ftos);
// stos
__ ldsh(Rclass, Roffset, Otos_i);
__ push(itos);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
__ bind(notShort);
// cmp(Rflags, ftos);
__ br(Assembler::notEqual, false, Assembler::pt, notFloat);
__ delayed() ->tst(Lscratch);
// ftos
__ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
__ push(ftos);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
__ bind(notFloat);
// dtos
__ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
__ push(dtos);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
}
__ bind(checkVolatile);
if (__ membar_has_effect(membar_bits)) {
// __ tst(Lscratch); executed in delay slot
__ br(Assembler::zero, false, Assembler::pt, exit);
__ delayed()->nop();
volatile_barrier(membar_bits);
}
__ bind(exit);
}
void TemplateTable::getfield(int byte_no) {
getfield_or_static(byte_no, false);
}
void TemplateTable::nofast_getfield(int byte_no) {
getfield_or_static(byte_no, false, may_not_rewrite);
}
void TemplateTable::getstatic(int byte_no) {
getfield_or_static(byte_no, true);
}
void TemplateTable::fast_accessfield(TosState state) {
transition(atos, state);
Register Rcache = G3_scratch;
Register index = G4_scratch;
Register Roffset = G4_scratch;
Register Rflags = Rcache;
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
__ get_cache_and_index_at_bcp(Rcache, index, 1);
jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
__ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
__ null_check(Otos_i);
__ verify_oop(Otos_i);
Label exit;
Assembler::Membar_mask_bits membar_bits =
Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
if (__ membar_has_effect(membar_bits)) {
// Get volatile flag
__ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
__ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
}
switch (bytecode()) {
case Bytecodes::_fast_bgetfield:
__ ldsb(Otos_i, Roffset, Otos_i);
break;
case Bytecodes::_fast_cgetfield:
__ lduh(Otos_i, Roffset, Otos_i);
break;
case Bytecodes::_fast_sgetfield:
__ ldsh(Otos_i, Roffset, Otos_i);
break;
case Bytecodes::_fast_igetfield:
__ ld(Otos_i, Roffset, Otos_i);
break;
case Bytecodes::_fast_lgetfield:
__ ld_long(Otos_i, Roffset, Otos_l);
break;
case Bytecodes::_fast_fgetfield:
__ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
break;
case Bytecodes::_fast_dgetfield:
__ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
break;
case Bytecodes::_fast_agetfield:
do_oop_load(_masm, Otos_i, Roffset, 0, Otos_i, noreg);
break;
default:
ShouldNotReachHere();
}
if (__ membar_has_effect(membar_bits)) {
__ btst(Lscratch, Rflags);
__ br(Assembler::zero, false, Assembler::pt, exit);
__ delayed()->nop();
volatile_barrier(membar_bits);
__ bind(exit);
}
if (state == atos) {
__ verify_oop(Otos_i); // does not blow flags!
}
}
void TemplateTable::jvmti_post_fast_field_mod() {
if (JvmtiExport::can_post_field_modification()) {
// Check to see if a field modification watch has been set before we take
// the time to call into the VM.
Label done;
AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
__ load_contents(get_field_modification_count_addr, G4_scratch);
__ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
__ pop_ptr(G4_scratch); // copy the object pointer from tos
__ verify_oop(G4_scratch);
__ push_ptr(G4_scratch); // put the object pointer back on tos
__ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
// Save tos values before call_VM() clobbers them. Since we have
// to do it for every data type, we use the saved values as the
// jvalue object.
switch (bytecode()) { // save tos values before call_VM() clobbers them
case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
case Bytecodes::_fast_bputfield: // fall through
case Bytecodes::_fast_zputfield: // fall through
case Bytecodes::_fast_sputfield: // fall through
case Bytecodes::_fast_cputfield: // fall through
case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
// get words in right order for use as jvalue object
case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
}
// setup pointer to jvalue object
__ mov(Lesp, G3_scratch); __ inc(G3_scratch, wordSize);
// G4_scratch: object pointer
// G1_scratch: cache entry pointer
// G3_scratch: jvalue object on the stack
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
switch (bytecode()) { // restore tos values
case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
case Bytecodes::_fast_bputfield: // fall through
case Bytecodes::_fast_zputfield: // fall through
case Bytecodes::_fast_sputfield: // fall through
case Bytecodes::_fast_cputfield: // fall through
case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
}
__ bind(done);
}
}
// The registers Rcache and index expected to be set before call.
// The function may destroy various registers, just not the Rcache and index registers.
void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
if (JvmtiExport::can_post_field_modification()) {
// Check to see if a field modification watch has been set before we take
// the time to call into the VM.
Label Label1;
assert_different_registers(Rcache, index, G1_scratch);
AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
__ load_contents(get_field_modification_count_addr, G1_scratch);
__ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
// The Rcache and index registers have been already set.
// This allows to eliminate this call but the Rcache and index
// registers must be correspondingly used after this line.
__ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
__ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
if (is_static) {
// Life is simple. Null out the object pointer.
__ clr(G4_scratch);
} else {
Register Rflags = G1_scratch;
// Life is harder. The stack holds the value on top, followed by the
// object. We don't know the size of the value, though; it could be
// one or two words depending on its type. As a result, we must find
// the type to determine where the object is.
Label two_word, valsizeknown;
__ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
__ mov(Lesp, G4_scratch);
__ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
// Make sure we don't need to mask Rflags after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
__ cmp(Rflags, ltos);
__ br(Assembler::equal, false, Assembler::pt, two_word);
__ delayed()->cmp(Rflags, dtos);
__ br(Assembler::equal, false, Assembler::pt, two_word);
__ delayed()->nop();
__ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
__ ba_short(valsizeknown);
__ bind(two_word);
__ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
__ bind(valsizeknown);
// setup object pointer
__ ld_ptr(G4_scratch, 0, G4_scratch);
__ verify_oop(G4_scratch);
}
// setup pointer to jvalue object
__ mov(Lesp, G1_scratch); __ inc(G1_scratch, wordSize);
// G4_scratch: object pointer or NULL if static
// G3_scratch: cache entry pointer
// G1_scratch: jvalue object on the stack
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
G4_scratch, G3_scratch, G1_scratch);
__ get_cache_and_index_at_bcp(Rcache, index, 1);
__ bind(Label1);
}
}
void TemplateTable::pop_and_check_object(Register r) {
__ pop_ptr(r);
__ null_check(r); // for field access must check obj.
__ verify_oop(r);
}
void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
transition(vtos, vtos);
Register Rcache = G3_scratch;
Register index = G4_scratch;
Register Rclass = Rcache;
Register Roffset= G4_scratch;
Register Rflags = G1_scratch;
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
jvmti_post_field_mod(Rcache, index, is_static);
load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
Assembler::Membar_mask_bits read_bits =
Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
Label notVolatile, checkVolatile, exit;
if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
__ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
__ and3(Rflags, Lscratch, Lscratch);
if (__ membar_has_effect(read_bits)) {
__ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
volatile_barrier(read_bits);
__ bind(notVolatile);
}
}
__ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
// Make sure we don't need to mask Rflags after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
// compute field type
Label notInt, notShort, notChar, notObj, notByte, notBool, notLong, notFloat;
if (is_static) {
// putstatic with object type most likely, check that first
__ cmp(Rflags, atos);
__ br(Assembler::notEqual, false, Assembler::pt, notObj);
__ delayed()->cmp(Rflags, itos);
// atos
{
__ pop_ptr();
__ verify_oop(Otos_i);
do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch);
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
}
__ bind(notObj);
// cmp(Rflags, itos);
__ br(Assembler::notEqual, false, Assembler::pt, notInt);
__ delayed()->cmp(Rflags, btos);
// itos
{
__ pop_i();
__ st(Otos_i, Rclass, Roffset);
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
}
__ bind(notInt);
} else {
// putfield with int type most likely, check that first
__ cmp(Rflags, itos);
__ br(Assembler::notEqual, false, Assembler::pt, notInt);
__ delayed()->cmp(Rflags, atos);
// itos
{
__ pop_i();
pop_and_check_object(Rclass);
__ st(Otos_i, Rclass, Roffset);
if (rc == may_rewrite) patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
}
__ bind(notInt);
// cmp(Rflags, atos);
__ br(Assembler::notEqual, false, Assembler::pt, notObj);
__ delayed()->cmp(Rflags, btos);
// atos
{
__ pop_ptr();
pop_and_check_object(Rclass);
__ verify_oop(Otos_i);
do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch);
if (rc == may_rewrite) patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
}
__ bind(notObj);
}
// cmp(Rflags, btos);
__ br(Assembler::notEqual, false, Assembler::pt, notByte);
__ delayed()->cmp(Rflags, ztos);
// btos
{
__ pop_i();
if (!is_static) pop_and_check_object(Rclass);
__ stb(Otos_i, Rclass, Roffset);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
}
__ bind(notByte);
// cmp(Rflags, btos);
__ br(Assembler::notEqual, false, Assembler::pt, notBool);
__ delayed()->cmp(Rflags, ltos);
// ztos
{
__ pop_i();
if (!is_static) pop_and_check_object(Rclass);
__ and3(Otos_i, 1, Otos_i);
__ stb(Otos_i, Rclass, Roffset);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_zputfield, G3_scratch, G4_scratch, true, byte_no);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
}
__ bind(notBool);
// cmp(Rflags, ltos);
__ br(Assembler::notEqual, false, Assembler::pt, notLong);
__ delayed()->cmp(Rflags, ctos);
// ltos
{
__ pop_l();
if (!is_static) pop_and_check_object(Rclass);
__ st_long(Otos_l, Rclass, Roffset);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
}
__ bind(notLong);
// cmp(Rflags, ctos);
__ br(Assembler::notEqual, false, Assembler::pt, notChar);
__ delayed()->cmp(Rflags, stos);
// ctos (char)
{
__ pop_i();
if (!is_static) pop_and_check_object(Rclass);
__ sth(Otos_i, Rclass, Roffset);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
}
__ bind(notChar);
// cmp(Rflags, stos);
__ br(Assembler::notEqual, false, Assembler::pt, notShort);
__ delayed()->cmp(Rflags, ftos);
// stos (short)
{
__ pop_i();
if (!is_static) pop_and_check_object(Rclass);
__ sth(Otos_i, Rclass, Roffset);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
}
__ bind(notShort);
// cmp(Rflags, ftos);
__ br(Assembler::notZero, false, Assembler::pt, notFloat);
__ delayed()->nop();
// ftos
{
__ pop_f();
if (!is_static) pop_and_check_object(Rclass);
__ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
}
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
}
__ bind(notFloat);
// dtos
{
__ pop_d();
if (!is_static) pop_and_check_object(Rclass);
__ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
}
}
__ bind(checkVolatile);
__ tst(Lscratch);
if (__ membar_has_effect(write_bits)) {
// __ tst(Lscratch); in delay slot
__ br(Assembler::zero, false, Assembler::pt, exit);
__ delayed()->nop();
volatile_barrier(Assembler::StoreLoad);
__ bind(exit);
}
}
void TemplateTable::fast_storefield(TosState state) {
transition(state, vtos);
Register Rcache = G3_scratch;
Register Rclass = Rcache;
Register Roffset= G4_scratch;
Register Rflags = G1_scratch;
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
jvmti_post_fast_field_mod();
__ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
Assembler::Membar_mask_bits read_bits =
Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
Label notVolatile, checkVolatile, exit;
if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
__ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
__ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
__ and3(Rflags, Lscratch, Lscratch);
if (__ membar_has_effect(read_bits)) {
__ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
volatile_barrier(read_bits);
__ bind(notVolatile);
}
}
__ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
pop_and_check_object(Rclass);
switch (bytecode()) {
case Bytecodes::_fast_zputfield: __ and3(Otos_i, 1, Otos_i); // fall through to bputfield
case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
case Bytecodes::_fast_cputfield: /* fall through */
case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset); break;
case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
case Bytecodes::_fast_fputfield:
__ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
break;
case Bytecodes::_fast_dputfield:
__ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
break;
case Bytecodes::_fast_aputfield:
do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch);
break;
default:
ShouldNotReachHere();
}
if (__ membar_has_effect(write_bits)) {
__ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
volatile_barrier(Assembler::StoreLoad);
__ bind(exit);
}
}
void TemplateTable::putfield(int byte_no) {
putfield_or_static(byte_no, false);
}
void TemplateTable::nofast_putfield(int byte_no) {
putfield_or_static(byte_no, false, may_not_rewrite);
}
void TemplateTable::putstatic(int byte_no) {
putfield_or_static(byte_no, true);
}
void TemplateTable::fast_xaccess(TosState state) {
transition(vtos, state);
Register Rcache = G3_scratch;
Register Roffset = G4_scratch;
Register Rflags = G4_scratch;
Register Rreceiver = Lscratch;
__ ld_ptr(Llocals, 0, Rreceiver);
// access constant pool cache (is resolved)
__ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
__ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
__ add(Lbcp, 1, Lbcp); // needed to report exception at the correct bcp
__ verify_oop(Rreceiver);
__ null_check(Rreceiver);
if (state == atos) {
do_oop_load(_masm, Rreceiver, Roffset, 0, Otos_i, noreg);
} else if (state == itos) {
__ ld (Rreceiver, Roffset, Otos_i) ;
} else if (state == ftos) {
__ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
} else {
ShouldNotReachHere();
}
Assembler::Membar_mask_bits membar_bits =
Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
if (__ membar_has_effect(membar_bits)) {
// Get is_volatile value in Rflags and check if membar is needed
__ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
// Test volatile
Label notVolatile;
__ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
__ btst(Rflags, Lscratch);
__ br(Assembler::zero, false, Assembler::pt, notVolatile);
__ delayed()->nop();
volatile_barrier(membar_bits);
__ bind(notVolatile);
}
__ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
__ sub(Lbcp, 1, Lbcp);
}
//----------------------------------------------------------------------------------------------------
// Calls
void TemplateTable::count_calls(Register method, Register temp) {
// implemented elsewhere
ShouldNotReachHere();
}
void TemplateTable::prepare_invoke(int byte_no,
Register method, // linked method (or i-klass)
Register ra, // return address
Register index, // itable index, MethodType, etc.
Register recv, // if caller wants to see it
Register flags // if caller wants to test it
) {
// determine flags
const Bytecodes::Code code = bytecode();
const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
const bool is_invokehandle = code == Bytecodes::_invokehandle;
const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
const bool is_invokespecial = code == Bytecodes::_invokespecial;
const bool load_receiver = (recv != noreg);
assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
assert(recv == noreg || recv == O0, "");
assert(flags == noreg || flags == O1, "");
// setup registers & access constant pool cache
if (recv == noreg) recv = O0;
if (flags == noreg) flags = O1;
const Register temp = O2;
assert_different_registers(method, ra, index, recv, flags, temp);
load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
__ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
// maybe push appendix to arguments
if (is_invokedynamic || is_invokehandle) {
Label L_no_push;
__ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
__ btst(flags, temp);
__ br(Assembler::zero, false, Assembler::pt, L_no_push);
__ delayed()->nop();
// Push the appendix as a trailing parameter.
// This must be done before we get the receiver,
// since the parameter_size includes it.
__ load_resolved_reference_at_index(temp, index, /*tmp*/recv);
__ verify_oop(temp);
__ push_ptr(temp); // push appendix (MethodType, CallSite, etc.)
__ bind(L_no_push);
}
// load receiver if needed (after appendix is pushed so parameter size is correct)
if (load_receiver) {
__ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp); // get parameter size
__ load_receiver(temp, recv); // __ argument_address uses Gargs but we need Lesp
__ verify_oop(recv);
}
// compute return type
__ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
// Make sure we don't need to mask flags after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
// load return address
{
const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
AddressLiteral table(table_addr);
__ set(table, temp);
__ sll(ra, LogBytesPerWord, ra);
__ ld_ptr(Address(temp, ra), ra);
}
}
void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
Register Rtemp = G4_scratch;
Register Rcall = Rindex;
assert_different_registers(Rcall, G5_method, Gargs, Rret);
// get target Method* & entry point
__ lookup_virtual_method(Rrecv, Rindex, G5_method);
__ profile_arguments_type(G5_method, Rcall, Gargs, true);
__ profile_called_method(G5_method, Rtemp);
__ call_from_interpreter(Rcall, Gargs, Rret);
}
void TemplateTable::invokevirtual(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f2_byte, "use this argument");
Register Rscratch = G3_scratch;
Register Rtemp = G4_scratch;
Register Rret = Lscratch;
Register O0_recv = O0;
Label notFinal;
load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
__ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
// Check for vfinal
__ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
__ btst(Rret, G4_scratch);
__ br(Assembler::zero, false, Assembler::pt, notFinal);
__ delayed()->and3(Rret, 0xFF, G4_scratch); // gets number of parameters
if (RewriteBytecodes && !UseSharedSpaces && !DumpSharedSpaces) {
patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
}
invokevfinal_helper(Rscratch, Rret);
__ bind(notFinal);
__ mov(G5_method, Rscratch); // better scratch register
__ load_receiver(G4_scratch, O0_recv); // gets receiverOop
// receiver is in O0_recv
__ verify_oop(O0_recv);
// get return address
AddressLiteral table(Interpreter::invoke_return_entry_table());
__ set(table, Rtemp);
__ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret); // get return type
// Make sure we don't need to mask Rret after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
__ sll(Rret, LogBytesPerWord, Rret);
__ ld_ptr(Rtemp, Rret, Rret); // get return address
// get receiver klass
__ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
__ load_klass(O0_recv, O0_recv);
__ verify_klass_ptr(O0_recv);
__ profile_virtual_call(O0_recv, O4);
generate_vtable_call(O0_recv, Rscratch, Rret);
}
void TemplateTable::fast_invokevfinal(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f2_byte, "use this argument");
load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
/*is_invokevfinal*/true, false);
__ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
invokevfinal_helper(G3_scratch, Lscratch);
}
void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
Register Rtemp = G4_scratch;
// Load receiver from stack slot
__ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
__ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
__ load_receiver(G4_scratch, O0);
// receiver NULL check
__ null_check(O0);
__ profile_final_call(O4);
__ profile_arguments_type(G5_method, Rscratch, Gargs, true);
// get return address
AddressLiteral table(Interpreter::invoke_return_entry_table());
__ set(table, Rtemp);
__ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret); // get return type
// Make sure we don't need to mask Rret after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
__ sll(Rret, LogBytesPerWord, Rret);
__ ld_ptr(Rtemp, Rret, Rret); // get return address
// do the call
__ call_from_interpreter(Rscratch, Gargs, Rret);
}
void TemplateTable::invokespecial(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
const Register Rret = Lscratch;
const Register O0_recv = O0;
const Register Rscratch = G3_scratch;
prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv); // get receiver also for null check
__ null_check(O0_recv);
// do the call
__ profile_call(O4);
__ profile_arguments_type(G5_method, Rscratch, Gargs, false);
__ call_from_interpreter(Rscratch, Gargs, Rret);
}
void TemplateTable::invokestatic(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
const Register Rret = Lscratch;
const Register Rscratch = G3_scratch;
prepare_invoke(byte_no, G5_method, Rret); // get f1 Method*
// do the call
__ profile_call(O4);
__ profile_arguments_type(G5_method, Rscratch, Gargs, false);
__ call_from_interpreter(Rscratch, Gargs, Rret);
}
void TemplateTable::invokeinterface_object_method(Register RKlass,
Register Rcall,
Register Rret,
Register Rflags) {
Register Rscratch = G4_scratch;
Register Rindex = Lscratch;
assert_different_registers(Rscratch, Rindex, Rret);
Label notFinal;
// Check for vfinal
__ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
__ btst(Rflags, Rscratch);
__ br(Assembler::zero, false, Assembler::pt, notFinal);
__ delayed()->nop();
__ profile_final_call(O4);
// do the call - the index (f2) contains the Method*
assert_different_registers(G5_method, Gargs, Rcall);
__ mov(Rindex, G5_method);
__ profile_arguments_type(G5_method, Rcall, Gargs, true);
__ call_from_interpreter(Rcall, Gargs, Rret);
__ bind(notFinal);
__ profile_virtual_call(RKlass, O4);
generate_vtable_call(RKlass, Rindex, Rret);
}
void TemplateTable::invokeinterface(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
const Register Rinterface = G1_scratch;
const Register Rmethod = Lscratch;
const Register Rret = G3_scratch;
const Register O0_recv = O0;
const Register O1_flags = O1;
const Register O2_Klass = O2;
const Register Rscratch = G4_scratch;
assert_different_registers(Rscratch, G5_method);
prepare_invoke(byte_no, Rinterface, Rret, Rmethod, O0_recv, O1_flags);
// First check for Object case, then private interface method,
// then regular interface method.
// get receiver klass - this is also a null check
__ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
__ load_klass(O0_recv, O2_Klass);
// Special case of invokeinterface called for virtual method of
// java.lang.Object. See cpCache.cpp for details.
Label notObjectMethod;
__ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
__ btst(O1_flags, Rscratch);
__ br(Assembler::zero, false, Assembler::pt, notObjectMethod);
__ delayed()->nop();
invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
__ bind(notObjectMethod);
Label L_no_such_interface;
// Check for private method invocation - indicated by vfinal
Label notVFinal;
{
__ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
__ btst(O1_flags, Rscratch);
__ br(Assembler::zero, false, Assembler::pt, notVFinal);
__ delayed()->nop();
Label subtype;
Register Rtemp = O1_flags;
__ check_klass_subtype(O2_Klass, Rinterface, Rscratch, Rtemp, subtype);
// If we get here the typecheck failed
__ ba(L_no_such_interface);
__ delayed()->nop();
__ bind(subtype);
// do the call
Register Rcall = Rinterface;
__ mov(Rmethod, G5_method);
assert_different_registers(Rcall, G5_method, Gargs, Rret);
__ profile_arguments_type(G5_method, Rcall, Gargs, true);
__ profile_final_call(Rscratch);
__ call_from_interpreter(Rcall, Gargs, Rret);
}
__ bind(notVFinal);
Register Rtemp = O1_flags;
// Receiver subtype check against REFC.
__ lookup_interface_method(// inputs: rec. class, interface, itable index
O2_Klass, Rinterface, noreg,
// outputs: temp reg1, temp reg2, temp reg3
G5_method, Rscratch, Rtemp,
L_no_such_interface,
/*return_method=*/false);
__ profile_virtual_call(O2_Klass, O4);
//
// find entry point to call
//
// Get declaring interface class from method
__ ld_ptr(Rmethod, Method::const_offset(), Rinterface);
__ ld_ptr(Rinterface, ConstMethod::constants_offset(), Rinterface);
__ ld_ptr(Rinterface, ConstantPool::pool_holder_offset_in_bytes(), Rinterface);
// Get itable index from method
const Register Rindex = G5_method;
__ ld(Rmethod, Method::itable_index_offset(), Rindex);
__ sub(Rindex, Method::itable_index_max, Rindex);
__ neg(Rindex);
// Preserve O2_Klass for throw_AbstractMethodErrorVerbose
__ mov(O2_Klass, O4);
__ lookup_interface_method(// inputs: rec. class, interface, itable index
O4, Rinterface, Rindex,
// outputs: method, scan temp reg, temp reg
G5_method, Rscratch, Rtemp,
L_no_such_interface);
// Check for abstract method error.
{
Label ok;
__ br_notnull_short(G5_method, Assembler::pt, ok);
// Pass arguments for generating a verbose error message.
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose),
O2_Klass, Rmethod);
__ should_not_reach_here();
__ bind(ok);
}
Register Rcall = Rinterface;
assert_different_registers(Rcall, G5_method, Gargs, Rret);
__ profile_arguments_type(G5_method, Rcall, Gargs, true);
__ profile_called_method(G5_method, Rscratch);
__ call_from_interpreter(Rcall, Gargs, Rret);
__ bind(L_no_such_interface);
// Pass arguments for generating a verbose error message.
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
O2_Klass, Rinterface);
__ should_not_reach_here();
}
void TemplateTable::invokehandle(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
const Register Rret = Lscratch;
const Register G4_mtype = G4_scratch;
const Register O0_recv = O0;
const Register Rscratch = G3_scratch;
prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
__ null_check(O0_recv);
// G4: MethodType object (from cpool->resolved_references[f1], if necessary)
// G5: MH.invokeExact_MT method (from f2)
// Note: G4_mtype is already pushed (if necessary) by prepare_invoke
// do the call
__ verify_oop(G4_mtype);
__ profile_final_call(O4); // FIXME: profile the LambdaForm also
__ profile_arguments_type(G5_method, Rscratch, Gargs, true);
__ call_from_interpreter(Rscratch, Gargs, Rret);
}
void TemplateTable::invokedynamic(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
const Register Rret = Lscratch;
const Register G4_callsite = G4_scratch;
const Register Rscratch = G3_scratch;
prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
// G4: CallSite object (from cpool->resolved_references[f1])
// G5: MH.linkToCallSite method (from f2)
// Note: G4_callsite is already pushed by prepare_invoke
// %%% should make a type profile for any invokedynamic that takes a ref argument
// profile this call
__ profile_call(O4);
// do the call
__ verify_oop(G4_callsite);
__ profile_arguments_type(G5_method, Rscratch, Gargs, false);
__ call_from_interpreter(Rscratch, Gargs, Rret);
}
//----------------------------------------------------------------------------------------------------
// Allocation
void TemplateTable::_new() {
transition(vtos, atos);
Label slow_case;
Label done;
Label initialize_header;
Label initialize_object; // including clearing the fields
Register RallocatedObject = Otos_i;
Register RinstanceKlass = O1;
Register Roffset = O3;
Register Rscratch = O4;
__ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
__ get_cpool_and_tags(Rscratch, G3_scratch);
// make sure the class we're about to instantiate has been resolved
// This is done before loading InstanceKlass to be consistent with the order
// how Constant Pool is updated (see ConstantPool::klass_at_put)
__ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
__ ldub(G3_scratch, Roffset, G3_scratch);
__ cmp(G3_scratch, JVM_CONSTANT_Class);
__ br(Assembler::notEqual, false, Assembler::pn, slow_case);
__ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
// get InstanceKlass
__ load_resolved_klass_at_offset(Rscratch, Roffset, RinstanceKlass);
// make sure klass is fully initialized:
__ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
__ cmp(G3_scratch, InstanceKlass::fully_initialized);
__ br(Assembler::notEqual, false, Assembler::pn, slow_case);
__ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
// get instance_size in InstanceKlass (already aligned)
//__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
// make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
__ btst(Klass::_lh_instance_slow_path_bit, Roffset);
__ br(Assembler::notZero, false, Assembler::pn, slow_case);
__ delayed()->nop();
// Allocate the instance:
// If TLAB is enabled:
// Try to allocate in the TLAB.
// If fails, go to the slow path.
// Else If inline contiguous allocations are enabled:
// Try to allocate in eden.
// If fails due to heap end, go to slow path.
//
// If TLAB is enabled OR inline contiguous is enabled:
// Initialize the allocation.
// Exit.
//
// Go to slow path.
const bool allow_shared_alloc =
Universe::heap()->supports_inline_contig_alloc();
if(UseTLAB) {
Register RoldTopValue = RallocatedObject;
Register RtlabWasteLimitValue = G3_scratch;
Register RnewTopValue = G1_scratch;
Register RendValue = Rscratch;
Register RfreeValue = RnewTopValue;
// check if we can allocate in the TLAB
__ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
__ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
__ add(RoldTopValue, Roffset, RnewTopValue);
// if there is enough space, we do not CAS and do not clear
__ cmp(RnewTopValue, RendValue);
if(ZeroTLAB) {
// the fields have already been cleared
__ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
} else {
// initialize both the header and fields
__ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
}
__ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
// Allocation does not fit in the TLAB.
__ ba_short(slow_case);
} else {
// Allocation in the shared Eden
if (allow_shared_alloc) {
Register RoldTopValue = G1_scratch;
Register RtopAddr = G3_scratch;
Register RnewTopValue = RallocatedObject;
Register RendValue = Rscratch;
__ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
Label retry;
__ bind(retry);
__ set((intptr_t)Universe::heap()->end_addr(), RendValue);
__ ld_ptr(RendValue, 0, RendValue);
__ ld_ptr(RtopAddr, 0, RoldTopValue);
__ add(RoldTopValue, Roffset, RnewTopValue);
// RnewTopValue contains the top address after the new object
// has been allocated.
__ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
__ cas_ptr(RtopAddr, RoldTopValue, RnewTopValue);
// if someone beat us on the allocation, try again, otherwise continue
__ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
// bump total bytes allocated by this thread
// RoldTopValue and RtopAddr are dead, so can use G1 and G3
__ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
}
}
// If UseTLAB or allow_shared_alloc are true, the object is created above and
/**代码未完, 请加载全部代码(NowJava.com).**/