/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_SPARC_MACROASSEMBLER_SPARC_HPP
#define CPU_SPARC_MACROASSEMBLER_SPARC_HPP
#include "asm/assembler.hpp"
#include "utilities/macros.hpp"
// <sys/trap.h> promises that the system will not use traps 16-31
#define ST_RESERVED_FOR_USER_0 0x10
class BiasedLockingCounters;
// Register aliases for parts of the system:
// 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
// across context switches in V8+ ABI. Of course, there are no 64 bit regs
// in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
// g2-g4 are scratch registers called "application globals". Their
// meaning is reserved to the "compilation system"--which means us!
// They are are not supposed to be touched by ordinary C code, although
// highly-optimized C code might steal them for temps. They are safe
// across thread switches, and the ABI requires that they be safe
// across function calls.
//
// g1 and g3 are touched by more modules. V8 allows g1 to be clobbered
// across func calls, and V8+ also allows g5 to be clobbered across
// func calls. Also, g1 and g5 can get touched while doing shared
// library loading.
//
// We must not touch g7 (it is the thread-self register) and g6 is
// reserved for certain tools. g0, of course, is always zero.
//
// (Sources: SunSoft Compilers Group, thread library engineers.)
// %%%% The interpreter should be revisited to reduce global scratch regs.
// This global always holds the current JavaThread pointer:
REGISTER_DECLARATION(Register, G2_thread , G2);
REGISTER_DECLARATION(Register, G6_heapbase , G6);
// The following globals are part of the Java calling convention:
REGISTER_DECLARATION(Register, G5_method , G5);
REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
REGISTER_DECLARATION(Register, G5_inline_cache_reg , G5_method);
// The following globals are used for the new C1 & interpreter calling convention:
REGISTER_DECLARATION(Register, Gargs , G4); // pointing to the last argument
// This local is used to preserve G2_thread in the interpreter and in stubs:
REGISTER_DECLARATION(Register, L7_thread_cache , L7);
// These globals are used as scratch registers in the interpreter:
REGISTER_DECLARATION(Register, Gframe_size , G1); // SAME REG as G1_scratch
REGISTER_DECLARATION(Register, G1_scratch , G1); // also SAME
REGISTER_DECLARATION(Register, G3_scratch , G3);
REGISTER_DECLARATION(Register, G4_scratch , G4);
// These globals are used as short-lived scratch registers in the compiler:
REGISTER_DECLARATION(Register, Gtemp , G5);
// JSR 292 fixed register usages:
REGISTER_DECLARATION(Register, G5_method_type , G5);
REGISTER_DECLARATION(Register, G3_method_handle , G3);
REGISTER_DECLARATION(Register, L7_mh_SP_save , L7);
// The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
// because a single patchable "set" instruction (NativeMovConstReg,
// or NativeMovConstPatching for compiler1) instruction
// serves to set up either quantity, depending on whether the compiled
// call site is an inline cache or is megamorphic. See the function
// CompiledIC::set_to_megamorphic.
//
// If a inline cache targets an interpreted method, then the
// G5 register will be used twice during the call. First,
// the call site will be patched to load a compiledICHolder
// into G5. (This is an ordered pair of ic_klass, method.)
// The c2i adapter will first check the ic_klass, then load
// G5_method with the method part of the pair just before
// jumping into the interpreter.
//
// Note that G5_method is only the method-self for the interpreter,
// and is logically unrelated to G5_megamorphic_method.
//
// Invariants on G2_thread (the JavaThread pointer):
// - it should not be used for any other purpose anywhere
// - it must be re-initialized by StubRoutines::call_stub()
// - it must be preserved around every use of call_VM
// We can consider using g2/g3/g4 to cache more values than the
// JavaThread, such as the card-marking base or perhaps pointers into
// Eden. It's something of a waste to use them as scratch temporaries,
// since they are not supposed to be volatile. (Of course, if we find
// that Java doesn't benefit from application globals, then we can just
// use them as ordinary temporaries.)
//
// Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
// it makes sense to use them routinely for procedure linkage,
// whenever the On registers are not applicable. Examples: G5_method,
// G5_inline_cache_klass, and a double handful of miscellaneous compiler
// stubs. This means that compiler stubs, etc., should be kept to a
// maximum of two or three G-register arguments.
// stub frames
REGISTER_DECLARATION(Register, Lentry_args , L0); // pointer to args passed to callee (interpreter) not stub itself
// Interpreter frames
REGISTER_DECLARATION(Register, Lesp , L0); // expression stack pointer
REGISTER_DECLARATION(Register, Lbcp , L1); // pointer to next bytecode
REGISTER_DECLARATION(Register, Lmethod , L2);
REGISTER_DECLARATION(Register, Llocals , L3);
REGISTER_DECLARATION(Register, Largs , L3); // pointer to locals for signature handler
// must match Llocals in asm interpreter
REGISTER_DECLARATION(Register, Lmonitors , L4);
REGISTER_DECLARATION(Register, Lbyte_code , L5);
// When calling out from the interpreter we record SP so that we can remove any extra stack
// space allocated during adapter transitions. This register is only live from the point
// of the call until we return.
REGISTER_DECLARATION(Register, Llast_SP , L5);
REGISTER_DECLARATION(Register, Lscratch , L5);
REGISTER_DECLARATION(Register, Lscratch2 , L6);
REGISTER_DECLARATION(Register, LcpoolCache , L6); // constant pool cache
REGISTER_DECLARATION(Register, O5_savedSP , O5);
REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
// a copy SP, so in 64-bit it's a biased value. The bias
// is added and removed as needed in the frame code.
REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
REGISTER_DECLARATION(Register, ImethodDataPtr , I2); // Pointer to the current method data
// NOTE: Lscratch2 and LcpoolCache point to the same registers in
// the interpreter code. If Lscratch2 needs to be used for some
// purpose than LcpoolCache should be restore after that for
// the interpreter to work right
// (These assignments must be compatible with L7_thread_cache; see above.)
// Lbcp points into the middle of the method object.
// Exception processing
// These registers are passed into exception handlers.
// All exception handlers require the exception object being thrown.
// In addition, an nmethod's exception handler must be passed
// the address of the call site within the nmethod, to allow
// proper selection of the applicable catch block.
// (Interpreter frames use their own bcp() for this purpose.)
//
// The Oissuing_pc value is not always needed. When jumping to a
// handler that is known to be interpreted, the Oissuing_pc value can be
// omitted. An actual catch block in compiled code receives (from its
// nmethod's exception handler) the thrown exception in the Oexception,
// but it doesn't need the Oissuing_pc.
//
// If an exception handler (either interpreted or compiled)
// discovers there is no applicable catch block, it updates
// the Oissuing_pc to the continuation PC of its own caller,
// pops back to that caller's stack frame, and executes that
// caller's exception handler. Obviously, this process will
// iterate until the control stack is popped back to a method
// containing an applicable catch block. A key invariant is
// that the Oissuing_pc value is always a value local to
// the method whose exception handler is currently executing.
//
// Note: The issuing PC value is __not__ a raw return address (I7 value).
// It is a "return pc", the address __following__ the call.
// Raw return addresses are converted to issuing PCs by frame::pc(),
// or by stubs. Issuing PCs can be used directly with PC range tables.
//
REGISTER_DECLARATION(Register, Oexception , O0); // exception being thrown
REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
// Address is an abstraction used to represent a memory location.
//
// Note: A register location is represented via a Register, not
// via an address for efficiency & simplicity reasons.
class Address {
private:
Register _base; // Base register.
RegisterOrConstant _index_or_disp; // Index register or constant displacement.
RelocationHolder _rspec;
public:
Address() : _base(noreg), _index_or_disp(noreg) {}
Address(Register base, RegisterOrConstant index_or_disp)
: _base(base),
_index_or_disp(index_or_disp) {
}
Address(Register base, Register index)
: _base(base),
_index_or_disp(index) {
}
Address(Register base, int disp)
: _base(base),
_index_or_disp(disp) {
}
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
Address(Register base, ByteSize disp)
: _base(base),
_index_or_disp(in_bytes(disp)) {
}
#endif
// accessors
Register base() const { return _base; }
Register index() const { return _index_or_disp.as_register(); }
int disp() const { return _index_or_disp.as_constant(); }
bool has_index() const { return _index_or_disp.is_register(); }
bool has_disp() const { return _index_or_disp.is_constant(); }
bool uses(Register reg) const { return base() == reg || (has_index() && index() == reg); }
const relocInfo::relocType rtype() { return _rspec.type(); }
const RelocationHolder& rspec() { return _rspec; }
RelocationHolder rspec(int offset) const {
return offset == 0 ? _rspec : _rspec.plus(offset);
}
inline bool is_simm13(int offset = 0); // check disp+offset for overflow
Address plus_disp(int plusdisp) const { // bump disp by a small amount
assert(_index_or_disp.is_constant(), "must have a displacement");
Address a(base(), disp() + plusdisp);
return a;
}
bool is_same_address(Address a) const {
// disregard _rspec
return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp());
}
Address after_save() const {
Address a = (*this);
a._base = a._base->after_save();
return a;
}
Address after_restore() const {
Address a = (*this);
a._base = a._base->after_restore();
return a;
}
// Convert the raw encoding form into the form expected by the
// constructor for Address.
static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
friend class Assembler;
};
class AddressLiteral {
private:
address _address;
RelocationHolder _rspec;
RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
switch (rtype) {
case relocInfo::external_word_type:
return external_word_Relocation::spec(addr);
case relocInfo::internal_word_type:
return internal_word_Relocation::spec(addr);
case relocInfo::opt_virtual_call_type:
return opt_virtual_call_Relocation::spec();
case relocInfo::static_call_type:
return static_call_Relocation::spec();
case relocInfo::runtime_call_type:
return runtime_call_Relocation::spec();
case relocInfo::none:
return RelocationHolder();
default:
ShouldNotReachHere();
return RelocationHolder();
}
}
protected:
// creation
AddressLiteral() : _address(NULL), _rspec(NULL) {}
public:
AddressLiteral(address addr, RelocationHolder const& rspec)
: _address(addr),
_rspec(rspec) {}
// Some constructors to avoid casting at the call site.
AddressLiteral(jobject obj, RelocationHolder const& rspec)
: _address((address) obj),
_rspec(rspec) {}
AddressLiteral(intptr_t value, RelocationHolder const& rspec)
: _address((address) value),
_rspec(rspec) {}
AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
// Some constructors to avoid casting at the call site.
AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
// 32-bit complains about a multiple declaration for int*.
AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(Metadata* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(Metadata** addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
intptr_t value() const { return (intptr_t) _address; }
int low10() const;
const relocInfo::relocType rtype() const { return _rspec.type(); }
const RelocationHolder& rspec() const { return _rspec; }
RelocationHolder rspec(int offset) const {
return offset == 0 ? _rspec : _rspec.plus(offset);
}
};
// Convenience classes
class ExternalAddress: public AddressLiteral {
private:
static relocInfo::relocType reloc_for_target(address target) {
// Sometimes ExternalAddress is used for values which aren't
// exactly addresses, like the card table base.
// external_word_type can't be used for values in the first page
// so just skip the reloc in that case.
return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
}
public:
ExternalAddress(address target) : AddressLiteral(target, reloc_for_target( target)) {}
ExternalAddress(Metadata** target) : AddressLiteral(target, reloc_for_target((address) target)) {}
};
inline Address RegisterImpl::address_in_saved_window() const {
return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
}
// Argument is an abstraction used to represent an outgoing
// actual argument or an incoming formal parameter, whether
// it resides in memory or in a register, in a manner consistent
// with the SPARC Application Binary Interface, or ABI. This is
// often referred to as the native or C calling convention.
class Argument {
private:
int _number;
bool _is_in;
public:
enum {
n_register_parameters = 6, // only 6 registers may contain integer parameters
n_float_register_parameters = 16 // Can have up to 16 floating registers
};
// creation
Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
int number() const { return _number; }
bool is_in() const { return _is_in; }
bool is_out() const { return !is_in(); }
Argument successor() const { return Argument(number() + 1, is_in()); }
Argument as_in() const { return Argument(number(), true ); }
Argument as_out() const { return Argument(number(), false); }
// locating register-based arguments:
bool is_register() const { return _number < n_register_parameters; }
// locating Floating Point register-based arguments:
bool is_float_register() const { return _number < n_float_register_parameters; }
FloatRegister as_float_register() const {
assert(is_float_register(), "must be a register argument");
return as_FloatRegister(( number() *2 ) + 1);
}
FloatRegister as_double_register() const {
assert(is_float_register(), "must be a register argument");
return as_FloatRegister(( number() *2 ));
}
Register as_register() const {
assert(is_register(), "must be a register argument");
return is_in() ? as_iRegister(number()) : as_oRegister(number());
}
// locating memory-based arguments
Address as_address() const {
assert(!is_register(), "must be a memory argument");
return address_in_frame();
}
// When applied to a register-based argument, give the corresponding address
// into the 6-word area "into which callee may store register arguments"
// (This is a different place than the corresponding register-save area location.)
Address address_in_frame() const;
// debugging
const char* name() const;
friend class Assembler;
};
class RegistersForDebugging : public StackObj {
public:
intptr_t i[8], l[8], o[8], g[8];
float f[32];
double d[32];
void print(outputStream* s);
static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
// gen asm code to save regs
static void save_registers(MacroAssembler* a);
// restore global registers in case C code disturbed them
static void restore_registers(MacroAssembler* a, Register r);
};
// MacroAssembler extends Assembler by a few frequently used macros.
//
// Most of the standard SPARC synthetic ops are defined here.
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.
#define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
#define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
#define JUMP(a, temp, off) jump(a, temp, off, __FILE__, __LINE__)
#define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
class MacroAssembler : public Assembler {
// code patchers need various routines like inv_wdisp()
friend class NativeInstruction;
friend class NativeGeneralJump;
friend class Relocation;
friend class Label;
protected:
static int patched_branch(int dest_pos, int inst, int inst_pos);
static int branch_destination(int inst, int pos);
// Support for VM calls
// This is the base routine called by the different versions of call_VM_leaf. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
virtual void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
//
// It is imperative that all calls into the VM are handled via the call_VM macros.
// They make sure that the stack linkage is setup correctly. call_VM's correspond
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
//
// This is the base routine called by the different versions of call_VM. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
//
// A non-volatile java_thread_cache register should be specified so
// that the G2_thread value can be preserved across the call.
// (If java_thread_cache is noreg, then a slow get_thread call
// will re-initialize the G2_thread.) call_VM_base returns the register that contains the
// thread.
//
// If no last_java_sp is specified (noreg) than SP will be used instead.
virtual void call_VM_base(
Register oop_result, // where an oop-result ends up if any; use noreg otherwise
Register java_thread_cache, // the thread if computed before ; use noreg otherwise
Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
address entry_point, // the entry point
int number_of_arguments, // the number of arguments (w/o thread) to pop after call
bool check_exception=true // flag which indicates if exception should be checked
);
public:
MacroAssembler(CodeBuffer* code) : Assembler(code) {}
// This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
// The implementation is only non-empty for the InterpreterMacroAssembler,
// as only the interpreter handles and ForceEarlyReturn PopFrame requests.
virtual void check_and_handle_popframe(Register scratch_reg);
virtual void check_and_handle_earlyret(Register scratch_reg);
// Support for NULL-checks
//
// Generates code that causes a NULL OS exception if the content of reg is NULL.
// If the accessed location is M[reg + offset] and the offset is known, provide the
// offset. No explicit code generation is needed if the offset is within a certain
// range (0 <= offset <= page_size).
//
// FIXME: Currently not done for SPARC
void null_check(Register reg, int offset = -1);
static bool needs_explicit_null_check(intptr_t offset);
static bool uses_implicit_null_check(void* address);
// support for delayed instructions
MacroAssembler* delayed() { Assembler::delayed(); return this; }
// branches that use right instruction for v8 vs. v9
inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void br( Condition c, bool a, Predict p, Label& L );
inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void fb( Condition c, bool a, Predict p, Label& L );
// compares register with zero (32 bit) and branches (V9 and V8 instructions)
void cmp_zero_and_br( Condition c, Register s1, Label& L, bool a = false, Predict p = pn );
// Compares a pointer register with zero and branches on (not)null.
// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
void br_null ( Register s1, bool a, Predict p, Label& L );
void br_notnull( Register s1, bool a, Predict p, Label& L );
//
// Compare registers and branch with nop in delay slot or cbcond without delay slot.
//
// ATTENTION: use these instructions with caution because cbcond instruction
// has very short distance: 512 instructions (2Kbyte).
// Compare integer (32 bit) values (icc only).
void cmp_and_br_short(Register s1, Register s2, Condition c, Predict p, Label& L);
void cmp_and_br_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
// Platform depending version for pointer compare (icc on !LP64 and xcc on LP64).
void cmp_and_brx_short(Register s1, Register s2, Condition c, Predict p, Label& L);
void cmp_and_brx_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
// Short branch version for compares a pointer pwith zero.
void br_null_short ( Register s1, Predict p, Label& L );
void br_notnull_short( Register s1, Predict p, Label& L );
// unconditional short branch
void ba_short(Label& L);
// Branch on icc.z (true or not).
void br_icc_zero(bool iszero, Predict p, Label &L);
inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
// Branch that tests xcc in LP64 and icc in !LP64
inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void brx( Condition c, bool a, Predict p, Label& L );
// unconditional branch
inline void ba( Label& L );
// Branch that tests fp condition codes
inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
// Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
inline void cmp( Register s1, Register s2 );
inline void cmp( Register s1, int simm13a );
inline void jmp( Register s1, Register s2 );
inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
// Check if the call target is out of wdisp30 range (relative to the code cache)
static inline bool is_far_target(address d);
inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
inline void call( address d, RelocationHolder const& rspec);
inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
inline void call( Label& L, RelocationHolder const& rspec);
inline void callr( Register s1, Register s2 );
inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
inline void tst( Register s );
inline void ret( bool trace = false );
inline void retl( bool trace = false );
// Required platform-specific helpers for Label::patch_instructions.
// They _shadow_ the declarations in AbstractAssembler, which are undefined.
void pd_patch_instruction(address branch, address target, const char* file, int line);
// sethi Macro handles optimizations and relocations
private:
void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
public:
void sethi(const AddressLiteral& addrlit, Register d);
void patchable_sethi(const AddressLiteral& addrlit, Register d);
// compute the number of instructions for a sethi/set
static int insts_for_sethi( address a, bool worst_case = false );
static int worst_case_insts_for_set();
// set may be either setsw or setuw (high 32 bits may be zero or sign)
private:
void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
static int insts_for_internal_set(intptr_t value);
public:
void set(const AddressLiteral& addrlit, Register d);
void set(intptr_t value, Register d);
void set(address addr, Register d, RelocationHolder const& rspec);
static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
void patchable_set(const AddressLiteral& addrlit, Register d);
void patchable_set(intptr_t value, Register d);
void set64(jlong value, Register d, Register tmp);
static int insts_for_set64(jlong value);
// sign-extend 32 to 64
inline void signx( Register s, Register d );
inline void signx( Register d );
inline void not1( Register s, Register d );
inline void not1( Register d );
inline void neg( Register s, Register d );
inline void neg( Register d );
inline void cas( Register s1, Register s2, Register d);
inline void casx( Register s1, Register s2, Register d);
// Functions for isolating 64 bit atomic swaps for LP64
// cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
inline void cas_ptr( Register s1, Register s2, Register d);
// Resolve a jobject or jweak
void resolve_jobject(Register value, Register tmp);
// Functions for isolating 64 bit shifts for LP64
inline void sll_ptr( Register s1, Register s2, Register d );
inline void sll_ptr( Register s1, int imm6a, Register d );
inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
inline void srl_ptr( Register s1, Register s2, Register d );
inline void srl_ptr( Register s1, int imm6a, Register d );
// little-endian
inline void casl( Register s1, Register s2, Register d);
inline void casxl( Register s1, Register s2, Register d);
inline void inc( Register d, int const13 = 1 );
inline void inccc( Register d, int const13 = 1 );
inline void dec( Register d, int const13 = 1 );
inline void deccc( Register d, int const13 = 1 );
using Assembler::add;
inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype);
inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
inline void add(const Address& a, Register d, int offset = 0);
using Assembler::andn;
inline void andn( Register s1, RegisterOrConstant s2, Register d);
inline void btst( Register s1, Register s2 );
inline void btst( int simm13a, Register s );
inline void bset( Register s1, Register s2 );
inline void bset( int simm13a, Register s );
inline void bclr( Register s1, Register s2 );
inline void bclr( int simm13a, Register s );
inline void btog( Register s1, Register s2 );
inline void btog( int simm13a, Register s );
inline void clr( Register d );
inline void clrb( Register s1, Register s2);
inline void clrh( Register s1, Register s2);
inline void clr( Register s1, Register s2);
inline void clrx( Register s1, Register s2);
inline void clrb( Register s1, int simm13a);
inline void clrh( Register s1, int simm13a);
inline void clr( Register s1, int simm13a);
inline void clrx( Register s1, int simm13a);
// copy & clear upper word
inline void clruw( Register s, Register d );
// clear upper word
inline void clruwu( Register d );
using Assembler::ldsb;
using Assembler::ldsh;
using Assembler::ldsw;
using Assembler::ldub;
using Assembler::lduh;
using Assembler::lduw;
using Assembler::ldx;
using Assembler::ldd;
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
inline void ld(Register s1, ByteSize simm13a, Register d);
#endif
inline void ld(Register s1, Register s2, Register d);
inline void ld(Register s1, int simm13a, Register d);
inline void ldsb(const Address& a, Register d, int offset = 0);
inline void ldsh(const Address& a, Register d, int offset = 0);
inline void ldsw(const Address& a, Register d, int offset = 0);
inline void ldub(const Address& a, Register d, int offset = 0);
inline void lduh(const Address& a, Register d, int offset = 0);
inline void lduw(const Address& a, Register d, int offset = 0);
inline void ldx( const Address& a, Register d, int offset = 0);
inline void ld( const Address& a, Register d, int offset = 0);
inline void ldd( const Address& a, Register d, int offset = 0);
inline void ldub(Register s1, RegisterOrConstant s2, Register d );
inline void ldsb(Register s1, RegisterOrConstant s2, Register d );
inline void lduh(Register s1, RegisterOrConstant s2, Register d );
inline void ldsh(Register s1, RegisterOrConstant s2, Register d );
inline void lduw(Register s1, RegisterOrConstant s2, Register d );
inline void ldsw(Register s1, RegisterOrConstant s2, Register d );
inline void ldx( Register s1, RegisterOrConstant s2, Register d );
inline void ld( Register s1, RegisterOrConstant s2, Register d );
inline void ldd( Register s1, RegisterOrConstant s2, Register d );
using Assembler::ldf;
inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
// little-endian
inline void lduwl(Register s1, Register s2, Register d);
inline void ldswl(Register s1, Register s2, Register d);
inline void ldxl( Register s1, Register s2, Register d);
inline void ldfl(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
// membar psuedo instruction. takes into account target memory model.
inline void membar( Assembler::Membar_mask_bits const7a );
// returns if membar generates anything.
inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
// mov pseudo instructions
inline void mov( Register s, Register d);
inline void mov_or_nop( Register s, Register d);
inline void mov( int simm13a, Register d);
using Assembler::prefetch;
inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
using Assembler::stb;
using Assembler::sth;
using Assembler::stw;
using Assembler::stx;
using Assembler::std;
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
inline void st(Register d, Register s1, ByteSize simm13a);
#endif
inline void st(Register d, Register s1, Register s2);
inline void st(Register d, Register s1, int simm13a);
inline void stb(Register d, const Address& a, int offset = 0 );
inline void sth(Register d, const Address& a, int offset = 0 );
inline void stw(Register d, const Address& a, int offset = 0 );
inline void stx(Register d, const Address& a, int offset = 0 );
inline void st( Register d, const Address& a, int offset = 0 );
inline void std(Register d, const Address& a, int offset = 0 );
inline void stb(Register d, Register s1, RegisterOrConstant s2 );
inline void sth(Register d, Register s1, RegisterOrConstant s2 );
inline void stw(Register d, Register s1, RegisterOrConstant s2 );
inline void stx(Register d, Register s1, RegisterOrConstant s2 );
inline void std(Register d, Register s1, RegisterOrConstant s2 );
inline void st( Register d, Register s1, RegisterOrConstant s2 );
using Assembler::stf;
inline void stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
inline void stf(FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
// Note: offset is added to s2.
using Assembler::sub;
inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
using Assembler::swap;
inline void swap(const Address& a, Register d, int offset = 0);
// address pseudos: make these names unlike instruction names to avoid confusion
inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
inline void load_bool_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
// ring buffer traceable jumps
void jmp2( Register r1, Register r2, const char* file, int line );
void jmp ( Register r1, int offset, const char* file, int line );
void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
void jump (const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line);
// argument pseudos:
inline void load_argument( Argument& a, Register d );
inline void store_argument( Register s, Argument& a );
inline void store_ptr_argument( Register s, Argument& a );
inline void store_float_argument( FloatRegister s, Argument& a );
inline void store_double_argument( FloatRegister s, Argument& a );
inline void store_long_argument( Register s, Argument& a );
// handy macros:
inline void round_to( Register r, int modulus );
// --------------------------------------------------
// Functions for isolating 64 bit loads for LP64
// ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
// st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
inline void ld_ptr(Register s1, Register s2, Register d);
inline void ld_ptr(Register s1, int simm13a, Register d);
inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
inline void ld_ptr(const Address& a, Register d, int offset = 0);
inline void st_ptr(Register d, Register s1, Register s2);
inline void st_ptr(Register d, Register s1, int simm13a);
inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
inline void st_ptr(Register d, const Address& a, int offset = 0);
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
inline void st_ptr(Register d, Register s1, ByteSize simm13a);
#endif
// ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
// st_long will perform std for 32 bit VM's and stx for 64 bit VM's
inline void ld_long(Register s1, Register s2, Register d);
inline void ld_long(Register s1, int simm13a, Register d);
inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
inline void ld_long(const Address& a, Register d, int offset = 0);
inline void st_long(Register d, Register s1, Register s2);
inline void st_long(Register d, Register s1, int simm13a);
inline void st_long(Register d, Register s1, RegisterOrConstant s2);
inline void st_long(Register d, const Address& a, int offset = 0);
// Helpers for address formation.
// - They emit only a move if s2 is a constant zero.
// - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
// - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
if (is_simm13(src.constant_or_zero()))
return src; // register or short constant
guarantee(temp != noreg, "constant offset overflow");
set(src.as_constant(), temp);
return temp;
}
// --------------------------------------------------
public:
// traps as per trap.h (SPARC ABI?)
void breakpoint_trap();
void breakpoint_trap(Condition c, CC cc);
void safepoint_poll(Label& slow_path, bool a, Register thread_reg, Register temp_reg);
// Stack frame creation/removal
void enter();
void leave();
// Manipulation of C++ bools
// These are idioms to flag the need for care with accessing bools but on
// this platform we assume byte size
inline void stbool(Register d, const Address& a);
inline void ldbool(const Address& a, Register d);
inline void movbool( bool boolconst, Register d);
void resolve_oop_handle(Register result, Register tmp);
void load_mirror(Register mirror, Register method, Register tmp);
// klass oop manipulations if compressed
void load_klass(Register src_oop, Register klass);
void store_klass(Register klass, Register dst_oop);
void store_klass_gap(Register s, Register dst_oop);
// oop manipulations
void access_store_at(BasicType type, DecoratorSet decorators,
Register src, Address dst, Register tmp);
void access_load_at(BasicType type, DecoratorSet decorators,
Address src, Register dst, Register tmp);
void load_heap_oop(const Address& s, Register d,
Register tmp = noreg, DecoratorSet decorators = 0);
void load_heap_oop(Register s1, Register s2, Register d,
Register tmp = noreg, DecoratorSet decorators = 0);
void load_heap_oop(Register s1, int simm13a, Register d,
Register tmp = noreg, DecoratorSet decorators = 0);
void load_heap_oop(Register s1, RegisterOrConstant s2, Register d,
Register tmp = noreg, DecoratorSet decorators = 0);
void store_heap_oop(Register d, Register s1, Register s2,
Register tmp = noreg, DecoratorSet decorators = 0);
void store_heap_oop(Register d, Register s1, int simm13a,
Register tmp = noreg, DecoratorSet decorators = 0);
void store_heap_oop(Register d, const Address& a, int offset = 0,
Register tmp = noreg, DecoratorSet decorators = 0);
void encode_heap_oop(Register src, Register dst);
void encode_heap_oop(Register r) {
encode_heap_oop(r, r);
}
void decode_heap_oop(Register src, Register dst);
void decode_heap_oop(Register r) {
decode_heap_oop(r, r);
}
void encode_heap_oop_not_null(Register r);
void decode_heap_oop_not_null(Register r);
void encode_heap_oop_not_null(Register src, Register dst);
void decode_heap_oop_not_null(Register src, Register dst);
void encode_klass_not_null(Register r);
void decode_klass_not_null(Register r);
void encode_klass_not_null(Register src, Register dst);
void decode_klass_not_null(Register src, Register dst);
// Support for managing the JavaThread pointer (i.e.; the reference to
// thread-local information).
void get_thread(); // load G2_thread
void verify_thread(); // verify G2_thread contents
void save_thread (const Register threache); // save to cache
void restore_thread(const Register thread_cache); // restore from cache
// Support for last Java frame (but use call_VM instead where possible)
void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
void reset_last_Java_frame(void);
// Call into the VM.
// Passes the thread pointer (in O0) as a prepended argument.
// Makes sure oop return values are visible to the GC.
void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
// these overloadings are not presently used on SPARC:
void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
void get_vm_result (Register oop_result);
void get_vm_result_2(Register metadata_result);
// vm result is currently getting hijacked to for oop preservation
void set_vm_result(Register oop_result);
// Emit the CompiledIC call idiom
void ic_call(address entry, bool emit_delay = true, jint method_index = 0);
// if call_VM_base was called with check_exceptions=false, then call
// check_and_forward_exception to handle exceptions when it is safe
void check_and_forward_exception(Register scratch_reg);
// Returns the byte size of the instructions generated by decode_klass_not_null().
static int instr_size_for_decode_klass_not_null();
// if heap base register is used - reinit it with the correct value
void reinit_heapbase();
// Debugging
void _verify_oop(Register reg, const char * msg, const char * file, int line);
void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
// TODO: verify_method and klass metadata (compare against vptr?)
void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
void stop(const char* msg); // prints msg, dumps registers and stops execution
void warn(const char* msg); // prints msg, but don't stop
void untested(const char* what = "");
void unimplemented(const char* what = "");
void should_not_reach_here() { stop("should not reach here"); }
// oops in code
AddressLiteral allocate_oop_address(jobject obj); // allocate_index
AddressLiteral constant_oop_address(jobject obj); // find_index
inline void set_oop (jobject obj, Register d); // uses allocate_oop_address
inline void set_oop_constant (jobject obj, Register d); // uses constant_oop_address
inline void set_oop (const AddressLiteral& obj_addr, Register d); // same as load_address
// metadata in code that we have to keep track of
AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
AddressLiteral constant_metadata_address(Metadata* obj); // find_index
inline void set_metadata (Metadata* obj, Register d); // uses allocate_metadata_address
inline void set_metadata_constant (Metadata* obj, Register d); // uses constant_metadata_address
inline void set_metadata (const AddressLiteral& obj_addr, Register d); // same as load_address
void set_narrow_oop( jobject obj, Register d );
void set_narrow_klass( Klass* k, Register d );
// nop padding
void align(int modulus);
// declare a safepoint
void safepoint();
// factor out part of stop into subroutine to save space
void stop_subroutine();
// factor out part of verify_oop into subroutine to save space
void verify_oop_subroutine();
// side-door communication with signalHandler in os_solaris.cpp
static address _verify_oop_implicit_branch[3];
int total_frame_size_in_bytes(int extraWords);
// used when extraWords known statically
void save_frame(int extraWords = 0);
void save_frame_c1(int size_in_bytes);
// make a frame, and simultaneously pass up one or two register value
// into the new register window
void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
// give no. (outgoing) params, calc # of words will need on frame
void calc_mem_param_words(Register Rparam_words, Register Rresult);
// used to calculate frame size dynamically
// result is in bytes and must be negated for save inst
void calc_frame_size(Register extraWords, Register resultReg);
// calc and also save
void calc_frame_size_and_save(Register extraWords, Register resultReg);
static void debug(char* msg, RegistersForDebugging* outWindow);
// implementations of bytecodes used by both interpreter and compiler
void lcmp( Register Ra_hi, Register Ra_low,
Register Rb_hi, Register Rb_low,
Register Rresult);
void lneg( Register Rhi, Register Rlow );
void lshl( Register Rin_high, Register Rin_low, Register Rcount,
Register Rout_high, Register Rout_low, Register Rtemp );
void lshr( Register Rin_high, Register Rin_low, Register Rcount,
Register Rout_high, Register Rout_low, Register Rtemp );
void lushr( Register Rin_high, Register Rin_low, Register Rcount,
Register Rout_high, Register Rout_low, Register Rtemp );
void lcmp( Register Ra, Register Rb, Register Rresult);
// Load and store values by size and signed-ness
void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed);
void store_sized_value(Register src, Address dst, size_t size_in_bytes);
void float_cmp( bool is_float, int unordered_result,
FloatRegister Fa, FloatRegister Fb,
Register Rresult);
void save_all_globals_into_locals();
void restore_globals_from_locals();
// These set the icc condition code to equal if the lock succeeded
// and notEqual if it failed and requires a slow case
void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
Register Rscratch,
BiasedLockingCounters* counters = NULL,
bool try_bias = UseBiasedLocking);
void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
Register Rscratch,
bool try_bias = UseBiasedLocking);
// Biased locking support
// Upon entry, lock_reg must point to the lock record on the stack,
// obj_reg must contain the target object, and mark_reg must contain
// the target object's header.
// Destroys mark_reg if an attempt is made to bias an anonymously
// biased lock. In this case a failure will go either to the slow
// case or fall through with the notEqual condition code set with
// the expectation that the slow case in the runtime will be called.
// In the fall-through case where the CAS-based lock is done,
// mark_reg is not destroyed.
void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
Label& done, Label* slow_case = NULL,
BiasedLockingCounters* counters = NULL);
// Upon entry, the base register of mark_addr must contain the oop.
// Destroys temp_reg.
// If allow_delay_slot_filling is set to true, the next instruction
// emitted after this one will go in an annulled delay slot if the
// biased locking exit case failed.
void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
// allocation
void eden_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Register t2, // temp register
Label& slow_case // continuation point if fast allocation fails
);
void tlab_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Label& slow_case // continuation point if fast allocation fails
);
void zero_memory(Register base, Register index);
void incr_allocated_bytes(RegisterOrConstant size_in_bytes,
Register t1, Register t2);
// interface method calling
void lookup_interface_method(Register recv_klass,
Register intf_klass,
RegisterOrConstant itable_index,
Register method_result,
Register temp_reg, Register temp2_reg,
Label& no_such_interface,
bool return_method = true);
// virtual method calling
void lookup_virtual_method(Register recv_klass,
RegisterOrConstant vtable_index,
Register method_result);
// Test sub_klass against super_klass, with fast and slow paths.
// The fast path produces a tri-state answer: yes / no / maybe-slow.
// One of the three labels can be NULL, meaning take the fall-through.
// If super_check_offset is -1, the value is loaded up from super_klass.
// No registers are killed, except temp_reg and temp2_reg.
// If super_check_offset is not -1, temp2_reg is not used and can be noreg.
void check_klass_subtype_fast_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Label* L_success,
Label* L_failure,
Label* L_slow_path,
RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
// The rest of the type check; must be wired to a corresponding fast path.
// It does not repeat the fast path logic, so don't use it standalone.
/**代码未完, 请加载全部代码(NowJava.com).**/