/*
* Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "c1/c1_Defs.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "ci/ciUtilities.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/universe.hpp"
#include "nativeInst_sparc.hpp"
#include "oops/compiledICHolder.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/signature.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/macros.hpp"
#include "utilities/align.hpp"
#include "vmreg_sparc.inline.hpp"
// Implementation of StubAssembler
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry_point, int number_of_arguments) {
// for sparc changing the number of arguments doesn't change
// anything about the frame size so we'll always lie and claim that
// we are only passing 1 argument.
set_num_rt_args(1);
assert_not_delayed();
// bang stack before going to runtime
set(-os::vm_page_size() + STACK_BIAS, G3_scratch);
st(G0, SP, G3_scratch);
// debugging support
assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
set_last_Java_frame(SP, noreg);
if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
save_thread(L7_thread_cache);
// do the call
call(entry_point, relocInfo::runtime_call_type);
if (!VerifyThread) {
delayed()->mov(G2_thread, O0); // pass thread as first argument
} else {
delayed()->nop(); // (thread already passed)
}
int call_offset = offset(); // offset of return address
restore_thread(L7_thread_cache);
reset_last_Java_frame();
// check for pending exceptions
{ Label L;
Address exception_addr(G2_thread, Thread::pending_exception_offset());
ld_ptr(exception_addr, Gtemp);
br_null_short(Gtemp, pt, L);
Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
st_ptr(G0, vm_result_addr);
Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
st_ptr(G0, vm_result_addr_2);
if (frame_size() == no_frame_size) {
// we use O7 linkage so that forward_exception_entry has the issuing PC
call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
delayed()->restore();
} else if (_stub_id == Runtime1::forward_exception_id) {
should_not_reach_here();
} else {
AddressLiteral exc(Runtime1::entry_for(Runtime1::forward_exception_id));
jump_to(exc, G4);
delayed()->nop();
}
bind(L);
}
// get oop result if there is one and reset the value in the thread
if (oop_result1->is_valid()) { // get oop result if there is one and reset it in the thread
get_vm_result (oop_result1);
} else {
// be a little paranoid and clear the result
Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
st_ptr(G0, vm_result_addr);
}
// get second result if there is one and reset the value in the thread
if (metadata_result->is_valid()) {
get_vm_result_2 (metadata_result);
} else {
// be a little paranoid and clear the result
Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
st_ptr(G0, vm_result_addr_2);
}
return call_offset;
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
// O0 is reserved for the thread
mov(arg1, O1);
return call_RT(oop_result1, metadata_result, entry, 1);
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
// O0 is reserved for the thread
mov(arg1, O1);
mov(arg2, O2); assert(arg2 != O1, "smashed argument");
return call_RT(oop_result1, metadata_result, entry, 2);
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
// O0 is reserved for the thread
mov(arg1, O1);
mov(arg2, O2); assert(arg2 != O1, "smashed argument");
mov(arg3, O3); assert(arg3 != O1 && arg3 != O2, "smashed argument");
return call_RT(oop_result1, metadata_result, entry, 3);
}
void StubAssembler::prologue(const char* name, bool must_gc_arguments) {
set_info(name, must_gc_arguments);
}
void StubAssembler::epilogue() {
delayed()->restore();
}
// Implementation of Runtime1
static int cpu_reg_save_offsets[FrameMap::nof_cpu_regs];
static int fpu_reg_save_offsets[FrameMap::nof_fpu_regs];
static int reg_save_size_in_words;
static int frame_size_in_bytes = -1;
static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers) {
assert(frame_size_in_bytes == sasm->total_frame_size_in_bytes(reg_save_size_in_words),
"mismatch in calculation");
sasm->set_frame_size(frame_size_in_bytes / BytesPerWord);
int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
int i;
for (i = 0; i < FrameMap::nof_cpu_regs; i++) {
Register r = as_Register(i);
if (r == G1 || r == G3 || r == G4 || r == G5) {
int sp_offset = cpu_reg_save_offsets[i];
oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
r->as_VMReg());
}
}
if (save_fpu_registers) {
for (i = 0; i < FrameMap::nof_fpu_regs; i++) {
FloatRegister r = as_FloatRegister(i);
int sp_offset = fpu_reg_save_offsets[i];
oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
r->as_VMReg());
}
}
return oop_map;
}
#define __ this->
void C1_MacroAssembler::save_live_registers_no_oop_map(bool save_fpu_registers) {
assert(frame_size_in_bytes == __ total_frame_size_in_bytes(reg_save_size_in_words),
"mismatch in calculation");
__ save_frame_c1(frame_size_in_bytes);
// Record volatile registers as callee-save values in an OopMap so their save locations will be
// propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
// deoptimization; see compiledVFrame::create_stack_value). The caller's I, L and O registers
// are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
// (as the stub's I's) when the runtime routine called by the stub creates its frame.
// OopMap frame sizes are in c2 stack slot sizes (sizeof(jint))
int i;
for (i = 0; i < FrameMap::nof_cpu_regs; i++) {
Register r = as_Register(i);
if (r == G1 || r == G3 || r == G4 || r == G5) {
int sp_offset = cpu_reg_save_offsets[i];
__ st_ptr(r, SP, (sp_offset * BytesPerWord) + STACK_BIAS);
}
}
if (save_fpu_registers) {
for (i = 0; i < FrameMap::nof_fpu_regs; i++) {
FloatRegister r = as_FloatRegister(i);
int sp_offset = fpu_reg_save_offsets[i];
__ stf(FloatRegisterImpl::S, r, SP, (sp_offset * BytesPerWord) + STACK_BIAS);
}
}
}
void C1_MacroAssembler::restore_live_registers(bool restore_fpu_registers) {
for (int i = 0; i < FrameMap::nof_cpu_regs; i++) {
Register r = as_Register(i);
if (r == G1 || r == G3 || r == G4 || r == G5) {
__ ld_ptr(SP, (cpu_reg_save_offsets[i] * BytesPerWord) + STACK_BIAS, r);
}
}
if (restore_fpu_registers) {
for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
FloatRegister r = as_FloatRegister(i);
__ ldf(FloatRegisterImpl::S, SP, (fpu_reg_save_offsets[i] * BytesPerWord) + STACK_BIAS, r);
}
}
}
#undef __
#define __ sasm->
static OopMap* save_live_registers(StubAssembler* sasm, bool save_fpu_registers = true) {
__ save_live_registers_no_oop_map(save_fpu_registers);
return generate_oop_map(sasm, save_fpu_registers);
}
static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
__ restore_live_registers(restore_fpu_registers);
}
void Runtime1::initialize_pd() {
// compute word offsets from SP at which live (non-windowed) registers are captured by stub routines
//
// A stub routine will have a frame that is at least large enough to hold
// a register window save area (obviously) and the volatile g registers
// and floating registers. A user of save_live_registers can have a frame
// that has more scratch area in it (although typically they will use L-regs).
// in that case the frame will look like this (stack growing down)
//
// FP -> | |
// | scratch mem |
// | " " |
// --------------
// | float regs |
// | " " |
// ---------------
// | G regs |
// | " " |
// ---------------
// | abi reg. |
// | window save |
// | area |
// SP -> ---------------
//
int i;
int sp_offset = align_up((int)frame::register_save_words, 2); // start doubleword aligned
// only G int registers are saved explicitly; others are found in register windows
for (i = 0; i < FrameMap::nof_cpu_regs; i++) {
Register r = as_Register(i);
if (r == G1 || r == G3 || r == G4 || r == G5) {
cpu_reg_save_offsets[i] = sp_offset;
sp_offset++;
}
}
// all float registers are saved explicitly
assert(FrameMap::nof_fpu_regs == 32, "double registers not handled here");
for (i = 0; i < FrameMap::nof_fpu_regs; i++) {
fpu_reg_save_offsets[i] = sp_offset;
sp_offset++;
}
reg_save_size_in_words = sp_offset - frame::memory_parameter_word_sp_offset;
// this should match assembler::total_frame_size_in_bytes, which
// isn't callable from this context. It's checked by an assert when
// it's used though.
frame_size_in_bytes = align_up(sp_offset * wordSize, 8);
}
OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
// make a frame and preserve the caller's caller-save registers
OopMap* oop_map = save_live_registers(sasm);
int call_offset;
if (!has_argument) {
call_offset = __ call_RT(noreg, noreg, target);
} else {
call_offset = __ call_RT(noreg, noreg, target, G4, G5);
}
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
__ should_not_reach_here();
return oop_maps;
}
OopMapSet* Runtime1::generate_stub_call(StubAssembler* sasm, Register result, address target,
Register arg1, Register arg2, Register arg3) {
// make a frame and preserve the caller's caller-save registers
OopMap* oop_map = save_live_registers(sasm);
int call_offset;
if (arg1 == noreg) {
call_offset = __ call_RT(result, noreg, target);
} else if (arg2 == noreg) {
call_offset = __ call_RT(result, noreg, target, arg1);
} else if (arg3 == noreg) {
call_offset = __ call_RT(result, noreg, target, arg1, arg2);
} else {
call_offset = __ call_RT(result, noreg, target, arg1, arg2, arg3);
}
OopMapSet* oop_maps = NULL;
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm);
__ ret();
__ delayed()->restore();
return oop_maps;
}
OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
// make a frame and preserve the caller's caller-save registers
OopMap* oop_map = save_live_registers(sasm);
// call the runtime patching routine, returns non-zero if nmethod got deopted.
int call_offset = __ call_RT(noreg, noreg, target);
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
// re-execute the patched instruction or, if the nmethod was deoptmized, return to the
// deoptimization handler entry that will cause re-execution of the current bytecode
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
Label no_deopt;
__ br_null_short(O0, Assembler::pt, no_deopt);
// return to the deoptimization handler entry for unpacking and rexecute
// if we simply returned the we'd deopt as if any call we patched had just
// returned.
restore_live_registers(sasm);
AddressLiteral dest(deopt_blob->unpack_with_reexecution());
__ jump_to(dest, O0);
__ delayed()->restore();
__ bind(no_deopt);
restore_live_registers(sasm);
__ ret();
__ delayed()->restore();
return oop_maps;
}
OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
OopMapSet* oop_maps = NULL;
// for better readability
const bool must_gc_arguments = true;
const bool dont_gc_arguments = false;
// stub code & info for the different stubs
switch (id) {
case forward_exception_id:
{
oop_maps = generate_handle_exception(id, sasm);
}
break;
case new_instance_id:
case fast_new_instance_id:
case fast_new_instance_init_check_id:
{
Register G5_klass = G5; // Incoming
Register O0_obj = O0; // Outgoing
if (id == new_instance_id) {
__ set_info("new_instance", dont_gc_arguments);
} else if (id == fast_new_instance_id) {
__ set_info("fast new_instance", dont_gc_arguments);
} else {
assert(id == fast_new_instance_init_check_id, "bad StubID");
__ set_info("fast new_instance init check", dont_gc_arguments);
}
// If TLAB is disabled, see if there is support for inlining contiguous
// allocations.
// Otherwise, just go to the slow path.
if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
!UseTLAB && Universe::heap()->supports_inline_contig_alloc()) {
Label slow_path;
Register G1_obj_size = G1;
Register G3_t1 = G3;
Register G4_t2 = G4;
assert_different_registers(G5_klass, G1_obj_size, G3_t1, G4_t2);
// Push a frame since we may do dtrace notification for the
// allocation which requires calling out and we don't want
// to stomp the real return address.
__ save_frame(0);
if (id == fast_new_instance_init_check_id) {
// make sure the klass is initialized
__ ldub(G5_klass, in_bytes(InstanceKlass::init_state_offset()), G3_t1);
__ cmp(G3_t1, InstanceKlass::fully_initialized);
__ br(Assembler::notEqual, false, Assembler::pn, slow_path);
__ delayed()->nop();
}
#ifdef ASSERT
// assert object can be fast path allocated
{
Label ok, not_ok;
__ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size);
// make sure it's an instance (LH > 0)
__ cmp_and_br_short(G1_obj_size, 0, Assembler::lessEqual, Assembler::pn, not_ok);
__ btst(Klass::_lh_instance_slow_path_bit, G1_obj_size);
__ br(Assembler::zero, false, Assembler::pn, ok);
__ delayed()->nop();
__ bind(not_ok);
__ stop("assert(can be fast path allocated)");
__ should_not_reach_here();
__ bind(ok);
}
#endif // ASSERT
// If we got here then the TLAB allocation failed, so try allocating directly from eden.
// get the instance size
__ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size);
__ eden_allocate(O0_obj, G1_obj_size, 0, G3_t1, G4_t2, slow_path);
__ incr_allocated_bytes(G1_obj_size, G3_t1, G4_t2);
__ initialize_object(O0_obj, G5_klass, G1_obj_size, 0, G3_t1, G4_t2, /* is_tlab_allocated */ false);
__ verify_oop(O0_obj);
__ mov(O0, I0);
__ ret();
__ delayed()->restore();
__ bind(slow_path);
// pop this frame so generate_stub_call can push it's own
__ restore();
}
oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_instance), G5_klass);
// I0->O0: new instance
}
break;
case counter_overflow_id:
// G4 contains bci, G5 contains method
oop_maps = generate_stub_call(sasm, noreg, CAST_FROM_FN_PTR(address, counter_overflow), G4, G5);
break;
case new_type_array_id:
case new_object_array_id:
{
Register G5_klass = G5; // Incoming
Register G4_length = G4; // Incoming
Register O0_obj = O0; // Outgoing
Address klass_lh(G5_klass, Klass::layout_helper_offset());
assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
assert(Klass::_lh_header_size_mask == 0xFF, "bytewise");
// Use this offset to pick out an individual byte of the layout_helper:
const int klass_lh_header_size_offset = ((BytesPerInt - 1) // 3 - 2 selects byte {0,1,0,0}
- Klass::_lh_header_size_shift / BitsPerByte);
if (id == new_type_array_id) {
__ set_info("new_type_array", dont_gc_arguments);
} else {
__ set_info("new_object_array", dont_gc_arguments);
}
#ifdef ASSERT
// assert object type is really an array of the proper kind
{
Label ok;
Register G3_t1 = G3;
__ ld(klass_lh, G3_t1);
__ sra(G3_t1, Klass::_lh_array_tag_shift, G3_t1);
int tag = ((id == new_type_array_id)
? Klass::_lh_array_tag_type_value
: Klass::_lh_array_tag_obj_value);
__ cmp_and_brx_short(G3_t1, tag, Assembler::equal, Assembler::pt, ok);
__ stop("assert(is an array klass)");
__ should_not_reach_here();
__ bind(ok);
}
#endif // ASSERT
if (id == new_type_array_id) {
oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_type_array), G5_klass, G4_length);
} else {
oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_object_array), G5_klass, G4_length);
}
// I0 -> O0: new array
}
break;
case new_multi_array_id:
{ // O0: klass
// O1: rank
// O2: address of 1st dimension
__ set_info("new_multi_array", dont_gc_arguments);
oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_multi_array), I0, I1, I2);
// I0 -> O0: new multi array
}
break;
case register_finalizer_id:
{
__ set_info("register_finalizer", dont_gc_arguments);
// load the klass and check the has finalizer flag
Label register_finalizer;
Register t = O1;
__ load_klass(O0, t);
__ ld(t, in_bytes(Klass::access_flags_offset()), t);
__ set(JVM_ACC_HAS_FINALIZER, G3);
__ andcc(G3, t, G0);
__ br(Assembler::notZero, false, Assembler::pt, register_finalizer);
__ delayed()->nop();
// do a leaf return
__ retl();
__ delayed()->nop();
__ bind(register_finalizer);
OopMap* oop_map = save_live_registers(sasm);
int call_offset = __ call_RT(noreg, noreg,
CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), I0);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
// Now restore all the live registers
restore_live_registers(sasm);
__ ret();
__ delayed()->restore();
}
break;
case throw_range_check_failed_id:
{ __ set_info("range_check_failed", dont_gc_arguments); // arguments will be discarded
// G4: index
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
}
break;
case throw_index_exception_id:
{ __ set_info("index_range_check_failed", dont_gc_arguments); // arguments will be discarded
// G4: index
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
}
break;
case throw_div0_exception_id:
{ __ set_info("throw_div0_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
}
break;
case throw_null_pointer_exception_id:
{ __ set_info("throw_null_pointer_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
}
break;
case handle_exception_id:
{ __ set_info("handle_exception", dont_gc_arguments);
oop_maps = generate_handle_exception(id, sasm);
}
break;
case handle_exception_from_callee_id:
{ __ set_info("handle_exception_from_callee", dont_gc_arguments);
oop_maps = generate_handle_exception(id, sasm);
}
break;
case unwind_exception_id:
{
// O0: exception
// I7: address of call to this method
__ set_info("unwind_exception", dont_gc_arguments);
__ mov(Oexception, Oexception->after_save());
__ add(I7, frame::pc_return_offset, Oissuing_pc->after_save());
__ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
G2_thread, Oissuing_pc->after_save());
__ verify_not_null_oop(Oexception->after_save());
// Restore SP from L7 if the exception PC is a method handle call site.
__ mov(O0, G5); // Save the target address.
__ lduw(Address(G2_thread, JavaThread::is_method_handle_return_offset()), L0);
__ tst(L0); // Condition codes are preserved over the restore.
__ restore();
__ jmp(G5, 0);
__ delayed()->movcc(Assembler::notZero, false, Assembler::icc, L7_mh_SP_save, SP); // Restore SP if required.
}
break;
case throw_array_store_exception_id:
{
__ set_info("throw_array_store_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
}
break;
case throw_class_cast_exception_id:
{
// G4: object
__ set_info("throw_class_cast_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
}
break;
case throw_incompatible_class_change_error_id:
{
__ set_info("throw_incompatible_class_cast_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
}
break;
case slow_subtype_check_id:
{ // Support for uint StubRoutine::partial_subtype_check( Klass sub, Klass super );
// Arguments :
//
// ret : G3
// sub : G3, argument, destroyed
// super: G1, argument, not changed
// raddr: O7, blown by call
Label miss;
__ save_frame(0); // Blow no registers!
__ check_klass_subtype_slow_path(G3, G1, L0, L1, L2, L4, NULL, &miss);
__ mov(1, G3);
__ ret(); // Result in G5 is 'true'
__ delayed()->restore(); // free copy or add can go here
__ bind(miss);
__ mov(0, G3);
__ ret(); // Result in G5 is 'false'
__ delayed()->restore(); // free copy or add can go here
}
case monitorenter_nofpu_id:
case monitorenter_id:
{ // G4: object
// G5: lock address
__ set_info("monitorenter", dont_gc_arguments);
int save_fpu_registers = (id == monitorenter_id);
// make a frame and preserve the caller's caller-save registers
OopMap* oop_map = save_live_registers(sasm, save_fpu_registers);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), G4, G5);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm, save_fpu_registers);
__ ret();
__ delayed()->restore();
}
break;
case monitorexit_nofpu_id:
case monitorexit_id:
{ // G4: lock address
// note: really a leaf routine but must setup last java sp
// => use call_RT for now (speed can be improved by
// doing last java sp setup manually)
__ set_info("monitorexit", dont_gc_arguments);
int save_fpu_registers = (id == monitorexit_id);
// make a frame and preserve the caller's caller-save registers
OopMap* oop_map = save_live_registers(sasm, save_fpu_registers);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), G4);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm, save_fpu_registers);
__ ret();
__ delayed()->restore();
}
break;
case deoptimize_id:
{
__ set_info("deoptimize", dont_gc_arguments);
OopMap* oop_map = save_live_registers(sasm);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), G4);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
AddressLiteral dest(deopt_blob->unpack_with_reexecution());
__ jump_to(dest, O0);
__ delayed()->restore();
}
break;
case access_field_patching_id:
{ __ set_info("access_field_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
}
break;
case load_klass_patching_id:
{ __ set_info("load_klass_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
}
break;
case load_mirror_patching_id:
{ __ set_info("load_mirror_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
}
break;
case load_appendix_patching_id:
{ __ set_info("load_appendix_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
}
break;
case dtrace_object_alloc_id:
{ // O0: object
__ set_info("dtrace_object_alloc", dont_gc_arguments);
// we can't gc here so skip the oopmap but make sure that all
// the live registers get saved.
save_live_registers(sasm);
__ save_thread(L7_thread_cache);
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc),
relocInfo::runtime_call_type);
__ delayed()->mov(I0, O0);
__ restore_thread(L7_thread_cache);
restore_live_registers(sasm);
__ ret();
__ delayed()->restore();
}
break;
case predicate_failed_trap_id:
{
__ set_info("predicate_failed_trap", dont_gc_arguments);
OopMap* oop_map = save_live_registers(sasm);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
restore_live_registers(sasm);
AddressLiteral dest(deopt_blob->unpack_with_reexecution());
__ jump_to(dest, O0);
__ delayed()->restore();
}
break;
default:
{ __ set_info("unimplemented entry", dont_gc_arguments);
__ save_frame(0);
__ set((int)id, O1);
__ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), O1);
__ should_not_reach_here();
}
break;
}
return oop_maps;
}
OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler* sasm) {
__ block_comment("generate_handle_exception");
// Save registers, if required.
OopMapSet* oop_maps = new OopMapSet();
OopMap* oop_map = NULL;
switch (id) {
case forward_exception_id:
// We're handling an exception in the context of a compiled frame.
// The registers have been saved in the standard places. Perform
// an exception lookup in the caller and dispatch to the handler
// if found. Otherwise unwind and dispatch to the callers
// exception handler.
oop_map = generate_oop_map(sasm, true);
// transfer the pending exception to the exception_oop
/**代码未完, 请加载全部代码(NowJava.com).**/