/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_SPARC_ASSEMBLER_SPARC_HPP
#define CPU_SPARC_ASSEMBLER_SPARC_HPP
#include "asm/register.hpp"
// The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
// level; i.e., what you write is what you get. The Assembler is generating code
// into a CodeBuffer.
class Assembler : public AbstractAssembler {
friend class AbstractAssembler;
friend class AddressLiteral;
// code patchers need various routines like inv_wdisp()
friend class NativeInstruction;
friend class NativeGeneralJump;
friend class Relocation;
friend class Label;
public:
// op carries format info; see page 62 & 267
enum ops {
call_op = 1, // fmt 1
branch_op = 0, // also sethi (fmt2)
arith_op = 2, // fmt 3, arith & misc
ldst_op = 3 // fmt 3, load/store
};
enum op2s {
bpr_op2 = 3,
fb_op2 = 6,
fbp_op2 = 5,
br_op2 = 2,
bp_op2 = 1,
sethi_op2 = 4
};
enum op3s {
// selected op3s
add_op3 = 0x00,
and_op3 = 0x01,
or_op3 = 0x02,
xor_op3 = 0x03,
sub_op3 = 0x04,
andn_op3 = 0x05,
orn_op3 = 0x06,
xnor_op3 = 0x07,
addc_op3 = 0x08,
mulx_op3 = 0x09,
umul_op3 = 0x0a,
smul_op3 = 0x0b,
subc_op3 = 0x0c,
udivx_op3 = 0x0d,
udiv_op3 = 0x0e,
sdiv_op3 = 0x0f,
addcc_op3 = 0x10,
andcc_op3 = 0x11,
orcc_op3 = 0x12,
xorcc_op3 = 0x13,
subcc_op3 = 0x14,
andncc_op3 = 0x15,
orncc_op3 = 0x16,
xnorcc_op3 = 0x17,
addccc_op3 = 0x18,
aes4_op3 = 0x19,
umulcc_op3 = 0x1a,
smulcc_op3 = 0x1b,
subccc_op3 = 0x1c,
udivcc_op3 = 0x1e,
sdivcc_op3 = 0x1f,
taddcc_op3 = 0x20,
tsubcc_op3 = 0x21,
taddcctv_op3 = 0x22,
tsubcctv_op3 = 0x23,
mulscc_op3 = 0x24,
sll_op3 = 0x25,
sllx_op3 = 0x25,
srl_op3 = 0x26,
srlx_op3 = 0x26,
sra_op3 = 0x27,
srax_op3 = 0x27,
rdreg_op3 = 0x28,
membar_op3 = 0x28,
flushw_op3 = 0x2b,
movcc_op3 = 0x2c,
sdivx_op3 = 0x2d,
popc_op3 = 0x2e,
movr_op3 = 0x2f,
sir_op3 = 0x30,
wrreg_op3 = 0x30,
saved_op3 = 0x31,
fpop1_op3 = 0x34,
fpop2_op3 = 0x35,
impdep1_op3 = 0x36,
addx_op3 = 0x36,
aes3_op3 = 0x36,
sha_op3 = 0x36,
bmask_op3 = 0x36,
bshuffle_op3 = 0x36,
alignaddr_op3 = 0x36,
faligndata_op3 = 0x36,
flog3_op3 = 0x36,
edge_op3 = 0x36,
fzero_op3 = 0x36,
fsrc_op3 = 0x36,
fnot_op3 = 0x36,
mpmul_op3 = 0x36,
umulx_op3 = 0x36,
xmulx_op3 = 0x36,
crc32c_op3 = 0x36,
impdep2_op3 = 0x37,
stpartialf_op3 = 0x37,
jmpl_op3 = 0x38,
rett_op3 = 0x39,
trap_op3 = 0x3a,
flush_op3 = 0x3b,
save_op3 = 0x3c,
restore_op3 = 0x3d,
done_op3 = 0x3e,
retry_op3 = 0x3e,
lduw_op3 = 0x00,
ldub_op3 = 0x01,
lduh_op3 = 0x02,
ldd_op3 = 0x03,
stw_op3 = 0x04,
stb_op3 = 0x05,
sth_op3 = 0x06,
std_op3 = 0x07,
ldsw_op3 = 0x08,
ldsb_op3 = 0x09,
ldsh_op3 = 0x0a,
ldx_op3 = 0x0b,
stx_op3 = 0x0e,
swap_op3 = 0x0f,
stwa_op3 = 0x14,
stxa_op3 = 0x1e,
ldf_op3 = 0x20,
ldfsr_op3 = 0x21,
ldqf_op3 = 0x22,
lddf_op3 = 0x23,
stf_op3 = 0x24,
stfsr_op3 = 0x25,
stqf_op3 = 0x26,
stdf_op3 = 0x27,
prefetch_op3 = 0x2d,
casa_op3 = 0x3c,
casxa_op3 = 0x3e,
mftoi_op3 = 0x36,
alt_bit_op3 = 0x10,
cc_bit_op3 = 0x10
};
enum opfs {
// selected opfs
edge8n_opf = 0x01,
fmovs_opf = 0x01,
fmovd_opf = 0x02,
fnegs_opf = 0x05,
fnegd_opf = 0x06,
addxc_opf = 0x11,
addxccc_opf = 0x13,
umulxhi_opf = 0x16,
alignaddr_opf = 0x18,
bmask_opf = 0x19,
fadds_opf = 0x41,
faddd_opf = 0x42,
fsubs_opf = 0x45,
fsubd_opf = 0x46,
faligndata_opf = 0x48,
fmuls_opf = 0x49,
fmuld_opf = 0x4a,
bshuffle_opf = 0x4c,
fdivs_opf = 0x4d,
fdivd_opf = 0x4e,
fcmps_opf = 0x51,
fcmpd_opf = 0x52,
fstox_opf = 0x81,
fdtox_opf = 0x82,
fxtos_opf = 0x84,
fxtod_opf = 0x88,
fitos_opf = 0xc4,
fdtos_opf = 0xc6,
fitod_opf = 0xc8,
fstod_opf = 0xc9,
fstoi_opf = 0xd1,
fdtoi_opf = 0xd2,
mdtox_opf = 0x110,
mstouw_opf = 0x111,
mstosw_opf = 0x113,
xmulx_opf = 0x115,
xmulxhi_opf = 0x116,
mxtod_opf = 0x118,
mwtos_opf = 0x119,
aes_kexpand0_opf = 0x130,
aes_kexpand2_opf = 0x131,
sha1_opf = 0x141,
sha256_opf = 0x142,
sha512_opf = 0x143,
crc32c_opf = 0x147,
mpmul_opf = 0x148
};
enum op5s {
aes_eround01_op5 = 0x00,
aes_eround23_op5 = 0x01,
aes_dround01_op5 = 0x02,
aes_dround23_op5 = 0x03,
aes_eround01_l_op5 = 0x04,
aes_eround23_l_op5 = 0x05,
aes_dround01_l_op5 = 0x06,
aes_dround23_l_op5 = 0x07,
aes_kexpand1_op5 = 0x08
};
enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez };
enum Condition {
// for FBfcc & FBPfcc instruction
f_never = 0,
f_notEqual = 1,
f_notZero = 1,
f_lessOrGreater = 2,
f_unorderedOrLess = 3,
f_less = 4,
f_unorderedOrGreater = 5,
f_greater = 6,
f_unordered = 7,
f_always = 8,
f_equal = 9,
f_zero = 9,
f_unorderedOrEqual = 10,
f_greaterOrEqual = 11,
f_unorderedOrGreaterOrEqual = 12,
f_lessOrEqual = 13,
f_unorderedOrLessOrEqual = 14,
f_ordered = 15,
// for integers
never = 0,
equal = 1,
zero = 1,
lessEqual = 2,
less = 3,
lessEqualUnsigned = 4,
lessUnsigned = 5,
carrySet = 5,
negative = 6,
overflowSet = 7,
always = 8,
notEqual = 9,
notZero = 9,
greater = 10,
greaterEqual = 11,
greaterUnsigned = 12,
greaterEqualUnsigned = 13,
carryClear = 13,
positive = 14,
overflowClear = 15
};
enum CC {
// ptr_cc is the correct condition code for a pointer or intptr_t:
icc = 0, xcc = 2, ptr_cc = xcc,
fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
};
enum PrefetchFcn {
severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
};
public:
// Helper functions for groups of instructions
enum Predict { pt = 1, pn = 0 }; // pt = predict taken
enum Membar_mask_bits { // page 184, v9
StoreStore = 1 << 3,
LoadStore = 1 << 2,
StoreLoad = 1 << 1,
LoadLoad = 1 << 0,
Sync = 1 << 6,
MemIssue = 1 << 5,
Lookaside = 1 << 4
};
//---< calculate length of instruction >---
// With SPARC being a RISC architecture, this always is BytesPerInstWord
// instruction must start at passed address
static unsigned int instr_len(unsigned char *instr) { return BytesPerInstWord; }
//---< longest instructions >---
static unsigned int instr_maxlen() { return BytesPerInstWord; }
static bool is_in_wdisp_range(address a, address b, int nbits) {
intptr_t d = intptr_t(b) - intptr_t(a);
return is_simm(d, nbits + 2);
}
address target_distance(Label &L) {
// Assembler::target(L) should be called only when
// a branch instruction is emitted since non-bound
// labels record current pc() as a branch address.
if (L.is_bound()) return target(L);
// Return current address for non-bound labels.
return pc();
}
// test if label is in simm16 range in words (wdisp16).
bool is_in_wdisp16_range(Label &L) {
return is_in_wdisp_range(target_distance(L), pc(), 16);
}
// test if the distance between two addresses fits in simm30 range in words
static bool is_in_wdisp30_range(address a, address b) {
return is_in_wdisp_range(a, b, 30);
}
enum ASIs { // page 72, v9
ASI_PRIMARY = 0x80,
ASI_PRIMARY_NOFAULT = 0x82,
ASI_PRIMARY_LITTLE = 0x88,
// 8x8-bit partial store
ASI_PST8_PRIMARY = 0xC0,
// Block initializing store
ASI_ST_BLKINIT_PRIMARY = 0xE2,
// Most-Recently-Used (MRU) BIS variant
ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2
// add more from book as needed
};
protected:
// helpers
// x is supposed to fit in a field "nbits" wide
// and be sign-extended. Check the range.
static void assert_signed_range(intptr_t x, int nbits) {
assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
"value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits);
}
static void assert_signed_word_disp_range(intptr_t x, int nbits) {
assert((x & 3) == 0, "not word aligned");
assert_signed_range(x, nbits + 2);
}
static void assert_unsigned_range(int x, int nbits) {
assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
}
// fields: note bits numbered from LSB = 0, fields known by inclusive bit range
static int fmask(juint hi_bit, juint lo_bit) {
assert(hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
return (1 << (hi_bit-lo_bit + 1)) - 1;
}
// inverse of u_field
static int inv_u_field(int x, int hi_bit, int lo_bit) {
juint r = juint(x) >> lo_bit;
r &= fmask(hi_bit, lo_bit);
return int(r);
}
// signed version: extract from field and sign-extend
static int inv_s_field(int x, int hi_bit, int lo_bit) {
int sign_shift = 31 - hi_bit;
return inv_u_field(((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
}
// given a field that ranges from hi_bit to lo_bit (inclusive,
// LSB = 0), and an unsigned value for the field,
// shift it into the field
#ifdef ASSERT
static int u_field(int x, int hi_bit, int lo_bit) {
assert((x & ~fmask(hi_bit, lo_bit)) == 0,
"value out of range");
int r = x << lo_bit;
assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
return r;
}
#else
// make sure this is inlined as it will reduce code size significantly
#define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
#endif
static int inv_op(int x) { return inv_u_field(x, 31, 30); }
static int inv_op2(int x) { return inv_u_field(x, 24, 22); }
static int inv_op3(int x) { return inv_u_field(x, 24, 19); }
static int inv_cond(int x) { return inv_u_field(x, 28, 25); }
static bool inv_immed(int x) { return (x & Assembler::immed(true)) != 0; }
static Register inv_rd(int x) { return as_Register(inv_u_field(x, 29, 25)); }
static Register inv_rs1(int x) { return as_Register(inv_u_field(x, 18, 14)); }
static Register inv_rs2(int x) { return as_Register(inv_u_field(x, 4, 0)); }
static int op(int x) { return u_field(x, 31, 30); }
static int rd(Register r) { return u_field(r->encoding(), 29, 25); }
static int fcn(int x) { return u_field(x, 29, 25); }
static int op3(int x) { return u_field(x, 24, 19); }
static int rs1(Register r) { return u_field(r->encoding(), 18, 14); }
static int rs2(Register r) { return u_field(r->encoding(), 4, 0); }
static int annul(bool a) { return u_field(a ? 1 : 0, 29, 29); }
static int cond(int x) { return u_field(x, 28, 25); }
static int cond_mov(int x) { return u_field(x, 17, 14); }
static int rcond(RCondition x) { return u_field(x, 12, 10); }
static int op2(int x) { return u_field(x, 24, 22); }
static int predict(bool p) { return u_field(p ? 1 : 0, 19, 19); }
static int branchcc(CC fcca) { return u_field(fcca, 21, 20); }
static int cmpcc(CC fcca) { return u_field(fcca, 26, 25); }
static int imm_asi(int x) { return u_field(x, 12, 5); }
static int immed(bool i) { return u_field(i ? 1 : 0, 13, 13); }
static int opf_low6(int w) { return u_field(w, 10, 5); }
static int opf_low5(int w) { return u_field(w, 9, 5); }
static int op5(int x) { return u_field(x, 8, 5); }
static int trapcc(CC cc) { return u_field(cc, 12, 11); }
static int sx(int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
static int opf(int x) { return u_field(x, 13, 5); }
static bool is_cbcond(int x) {
return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
}
static bool is_cxb(int x) {
assert(is_cbcond(x), "wrong instruction");
return (x & (1 << 21)) != 0;
}
static bool is_branch(int x) {
if (inv_op(x) != Assembler::branch_op) return false;
bool is_bpr = inv_op2(x) == Assembler::bpr_op2;
bool is_bp = inv_op2(x) == Assembler::bp_op2;
bool is_br = inv_op2(x) == Assembler::br_op2;
bool is_fp = inv_op2(x) == Assembler::fb_op2;
bool is_fbp = inv_op2(x) == Assembler::fbp_op2;
return is_bpr || is_bp || is_br || is_fp || is_fbp;
}
static bool is_call(int x) {
return inv_op(x) == Assembler::call_op;
}
static bool is_jump(int x) {
if (inv_op(x) != Assembler::arith_op) return false;
bool is_jmpl = inv_op3(x) == Assembler::jmpl_op3;
bool is_rett = inv_op3(x) == Assembler::rett_op3;
return is_jmpl || is_rett;
}
static bool is_rdpc(int x) {
return (inv_op(x) == Assembler::arith_op && inv_op3(x) == Assembler::rdreg_op3 &&
inv_u_field(x, 18, 14) == 5);
}
static bool is_cti(int x) {
return is_branch(x) || is_call(x) || is_jump(x); // Ignoring done/retry
}
static int cond_cbcond(int x) { return u_field((((x & 8) << 1) + 8 + (x & 7)), 29, 25); }
static int inv_cond_cbcond(int x) {
assert(is_cbcond(x), "wrong instruction");
return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29) << 3);
}
static int opf_cc(CC c, bool useFloat) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
static int mov_cc(CC c, bool useFloat) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
static int fd(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
static int fs3(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 13, 9); };
// some float instructions use this encoding on the op3 field
static int alt_op3(int op, FloatRegisterImpl::Width w) {
int r;
switch(w) {
case FloatRegisterImpl::S: r = op + 0; break;
case FloatRegisterImpl::D: r = op + 3; break;
case FloatRegisterImpl::Q: r = op + 2; break;
default: ShouldNotReachHere(); break;
}
return op3(r);
}
// compute inverse of simm
static int inv_simm(int x, int nbits) {
return (int)(x << (32 - nbits)) >> (32 - nbits);
}
static int inv_simm13(int x) { return inv_simm(x, 13); }
// signed immediate, in low bits, nbits long
static int simm(int x, int nbits) {
assert_signed_range(x, nbits);
return x & ((1 << nbits) - 1);
}
// unsigned immediate, in low bits, at most nbits long.
static int uimm(int x, int nbits) {
assert_unsigned_range(x, nbits);
return x & ((1 << nbits) - 1);
}
// compute inverse of wdisp16
static intptr_t inv_wdisp16(int x, intptr_t pos) {
int lo = x & ((1 << 14) - 1);
int hi = (x >> 20) & 3;
if (hi >= 2) hi |= ~1;
return (((hi << 14) | lo) << 2) + pos;
}
// word offset, 14 bits at LSend, 2 bits at B21, B20
static int wdisp16(intptr_t x, intptr_t off) {
intptr_t xx = x - off;
assert_signed_word_disp_range(xx, 16);
int r = (xx >> 2) & ((1 << 14) - 1) | (((xx >> (2+14)) & 3) << 20);
assert(inv_wdisp16(r, off) == x, "inverse is not inverse");
return r;
}
// compute inverse of wdisp10
static intptr_t inv_wdisp10(int x, intptr_t pos) {
assert(is_cbcond(x), "wrong instruction");
int lo = inv_u_field(x, 12, 5);
int hi = (x >> 19) & 3;
if (hi >= 2) hi |= ~1;
return (((hi << 8) | lo) << 2) + pos;
}
// word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
static int wdisp10(intptr_t x, intptr_t off) {
assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
intptr_t xx = x - off;
assert_signed_word_disp_range(xx, 10);
int r = (((xx >> 2) & ((1 << 8) - 1)) << 5) | (((xx >> (2+8)) & 3) << 19);
// Have to fake cbcond instruction to pass assert in inv_wdisp10()
assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x, "inverse is not inverse");
return r;
}
// word displacement in low-order nbits bits
static intptr_t inv_wdisp(int x, intptr_t pos, int nbits) {
int pre_sign_extend = x & ((1 << nbits) - 1);
int r = (pre_sign_extend >= (1 << (nbits - 1)) ?
pre_sign_extend | ~((1 << nbits) - 1) : pre_sign_extend);
return (r << 2) + pos;
}
static int wdisp(intptr_t x, intptr_t off, int nbits) {
intptr_t xx = x - off;
assert_signed_word_disp_range(xx, nbits);
int r = (xx >> 2) & ((1 << nbits) - 1);
assert(inv_wdisp(r, off, nbits) == x, "inverse not inverse");
return r;
}
// Extract the top 32 bits in a 64 bit word
static int32_t hi32(int64_t x) {
int32_t r = int32_t((uint64_t)x >> 32);
return r;
}
// given a sethi instruction, extract the constant, left-justified
static int inv_hi22(int x) {
return x << 10;
}
// create an imm22 field, given a 32-bit left-justified constant
static int hi22(int x) {
int r = int(juint(x) >> 10);
assert((r & ~((1 << 22) - 1)) == 0, "just checkin'");
return r;
}
// create a low10 __value__ (not a field) for a given a 32-bit constant
static int low10(int x) {
return x & ((1 << 10) - 1);
}
// create a low12 __value__ (not a field) for a given a 32-bit constant
static int low12(int x) {
return x & ((1 << 12) - 1);
}
// AES crypto instructions supported only on certain processors
static void aes_only() { assert(VM_Version::has_aes(), "This instruction only works on SPARC with AES instructions support"); }
// SHA crypto instructions supported only on certain processors
static void sha1_only() { assert(VM_Version::has_sha1(), "This instruction only works on SPARC with SHA1"); }
static void sha256_only() { assert(VM_Version::has_sha256(), "This instruction only works on SPARC with SHA256"); }
static void sha512_only() { assert(VM_Version::has_sha512(), "This instruction only works on SPARC with SHA512"); }
// CRC32C instruction supported only on certain processors
static void crc32c_only() { assert(VM_Version::has_crc32c(), "This instruction only works on SPARC with CRC32C"); }
// FMAf instructions supported only on certain processors
static void fmaf_only() { assert(VM_Version::has_fmaf(), "This instruction only works on SPARC with FMAf"); }
// MPMUL instruction supported only on certain processors
static void mpmul_only() { assert(VM_Version::has_mpmul(), "This instruction only works on SPARC with MPMUL"); }
// instruction only in VIS1
static void vis1_only() { assert(VM_Version::has_vis1(), "This instruction only works on SPARC with VIS1"); }
// instruction only in VIS2
static void vis2_only() { assert(VM_Version::has_vis2(), "This instruction only works on SPARC with VIS2"); }
// instruction only in VIS3
static void vis3_only() { assert(VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
// instruction deprecated in v9
static void v9_dep() { } // do nothing for now
protected:
#ifdef ASSERT
#define VALIDATE_PIPELINE
#endif
#ifdef VALIDATE_PIPELINE
// A simple delay-slot scheme:
// In order to check the programmer, the assembler keeps track of delay-slots.
// It forbids CTIs in delay-slots (conservative, but should be OK). Also, when
// emitting an instruction into a delay-slot, you must do so using delayed(),
// e.g. asm->delayed()->add(...), in order to check that you do not omit the
// delay-slot instruction. To implement this, we use a simple FSA.
enum { NoDelay, AtDelay, FillDelay } _delay_state;
// A simple hazard scheme:
// In order to avoid pipeline stalls, due to single cycle pipeline hazards, we
// adopt a simplistic state tracking mechanism that will enforce an additional
// 'nop' instruction to be inserted prior to emitting an instruction that can
// expose a given hazard (currently, PC-related hazards only).
enum { NoHazard, PcHazard } _hazard_state;
#endif
public:
// Tell the assembler that the next instruction must NOT be in delay-slot.
// Use at start of multi-instruction macros.
void assert_not_delayed() {
// This is a separate entry to avoid the creation of string constants in
// non-asserted code, with some compilers this pollutes the object code.
#ifdef VALIDATE_PIPELINE
assert_no_delay("Next instruction should not be in a delay-slot.");
#endif
}
protected:
void assert_no_delay(const char* msg) {
#ifdef VALIDATE_PIPELINE
assert(_delay_state == NoDelay, msg);
#endif
}
void assert_no_hazard() {
#ifdef VALIDATE_PIPELINE
assert(_hazard_state == NoHazard, "Unsolicited pipeline hazard.");
#endif
}
private:
inline int32_t prev_insn() {
assert(offset() > 0, "Interface violation.");
int32_t* addr = (int32_t*)pc() - 1;
return *addr;
}
#ifdef VALIDATE_PIPELINE
void validate_no_pipeline_hazards();
#endif
protected:
// Avoid possible pipeline stall by inserting an additional 'nop' instruction,
// if the previous instruction is a 'cbcond' or a 'rdpc'.
inline void avoid_pipeline_stall();
// A call to cti() is made before emitting a control-transfer instruction (CTI)
// in order to assert a CTI is not emitted right after a 'cbcond', nor in the
// delay-slot of another CTI. Only effective when assertions are enabled.
void cti() {
// A 'cbcond' or 'rdpc' instruction immediately followed by a CTI introduces
// a pipeline stall, which we make sure to prohibit.
assert_no_cbcond_before();
assert_no_rdpc_before();
#ifdef VALIDATE_PIPELINE
assert_no_hazard();
assert_no_delay("CTI in delay-slot.");
#endif
}
// Called when emitting CTI with a delay-slot, AFTER emitting.
inline void induce_delay_slot() {
#ifdef VALIDATE_PIPELINE
assert_no_delay("Already in delay-slot.");
_delay_state = AtDelay;
#endif
}
inline void induce_pc_hazard() {
#ifdef VALIDATE_PIPELINE
assert_no_hazard();
_hazard_state = PcHazard;
#endif
}
bool is_cbcond_before() { return offset() > 0 ? is_cbcond(prev_insn()) : false; }
bool is_rdpc_before() { return offset() > 0 ? is_rdpc(prev_insn()) : false; }
void assert_no_cbcond_before() {
assert(offset() == 0 || !is_cbcond_before(), "CBCOND should not be followed by CTI.");
}
void assert_no_rdpc_before() {
assert(offset() == 0 || !is_rdpc_before(), "RDPC should not be followed by CTI.");
}
public:
bool use_cbcond(Label &L) {
if (!UseCBCond || is_cbcond_before()) return false;
intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
assert((x & 3) == 0, "not word aligned");
return is_simm12(x);
}
// Tells assembler you know that next instruction is delayed
Assembler* delayed() {
#ifdef VALIDATE_PIPELINE
assert(_delay_state == AtDelay, "Delayed instruction not in delay-slot.");
_delay_state = FillDelay;
#endif
return this;
}
void flush() {
#ifdef VALIDATE_PIPELINE
assert(_delay_state == NoDelay, "Ending code with a delay-slot.");
#ifdef COMPILER2
validate_no_pipeline_hazards();
#endif
#endif
AbstractAssembler::flush();
}
inline void emit_int32(int32_t); // shadows AbstractAssembler::emit_int32
inline void emit_data(int32_t);
inline void emit_data(int32_t, RelocationHolder const&);
inline void emit_data(int32_t, relocInfo::relocType rtype);
// Helper for the above functions.
inline void check_delay();
public:
// instructions, refer to page numbers in the SPARC Architecture Manual, V9
// pp 135
inline void add(Register s1, Register s2, Register d);
inline void add(Register s1, int simm13a, Register d);
inline void addcc(Register s1, Register s2, Register d);
inline void addcc(Register s1, int simm13a, Register d);
inline void addc(Register s1, Register s2, Register d);
inline void addc(Register s1, int simm13a, Register d);
inline void addccc(Register s1, Register s2, Register d);
inline void addccc(Register s1, int simm13a, Register d);
// 4-operand AES instructions
inline void aes_eround01(FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d);
inline void aes_eround23(FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d);
inline void aes_dround01(FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d);
inline void aes_dround23(FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d);
inline void aes_eround01_l(FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d);
inline void aes_eround23_l(FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d);
inline void aes_dround01_l(FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d);
inline void aes_dround23_l(FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d);
inline void aes_kexpand1(FloatRegister s1, FloatRegister s2, int imm5a, FloatRegister d);
// 3-operand AES instructions
inline void aes_kexpand0(FloatRegister s1, FloatRegister s2, FloatRegister d);
inline void aes_kexpand2(FloatRegister s1, FloatRegister s2, FloatRegister d);
// pp 136
inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
inline void bpr(RCondition c, bool a, Predict p, Register s1, Label &L);
// compare and branch
inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label &L);
inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label &L);
protected: // use MacroAssembler::br instead
// pp 138
inline void fb(Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none);
inline void fb(Condition c, bool a, Label &L);
// pp 141
inline void fbp(Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none);
inline void fbp(Condition c, bool a, CC cc, Predict p, Label &L);
// pp 144
inline void br(Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none);
inline void br(Condition c, bool a, Label &L);
// pp 146
inline void bp(Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none);
inline void bp(Condition c, bool a, CC cc, Predict p, Label &L);
// pp 149
inline void call(address d, relocInfo::relocType rt = relocInfo::runtime_call_type);
inline void call(Label &L, relocInfo::relocType rt = relocInfo::runtime_call_type);
inline void call(address d, RelocationHolder const &rspec);
public:
// pp 150
// These instructions compare the contents of s2 with the contents of
// memory at address in s1. If the values are equal, the contents of memory
// at address s1 is swapped with the data in d. If the values are not equal,
// the the contents of memory at s1 is loaded into d, without the swap.
inline void casa(Register s1, Register s2, Register d, int ia = -1);
inline void casxa(Register s1, Register s2, Register d, int ia = -1);
// pp 152
inline void udiv(Register s1, Register s2, Register d);
inline void udiv(Register s1, int simm13a, Register d);
inline void sdiv(Register s1, Register s2, Register d);
inline void sdiv(Register s1, int simm13a, Register d);
inline void udivcc(Register s1, Register s2, Register d);
inline void udivcc(Register s1, int simm13a, Register d);
inline void sdivcc(Register s1, Register s2, Register d);
inline void sdivcc(Register s1, int simm13a, Register d);
// pp 155
inline void done();
inline void retry();
// pp 156
inline void fadd(FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d);
inline void fsub(FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d);
// pp 157
inline void fcmp(FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2);
inline void fcmpe(FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2);
// pp 159
inline void ftox(FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
inline void ftoi(FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
// pp 160
inline void ftof(FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d);
// pp 161
inline void fxtof(FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
inline void fitof(FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
// pp 162
inline void fmov(FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
inline void fneg(FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
inline void fabs(FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
// pp 163
inline void fmul(FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d);
inline void fmul(FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d);
inline void fdiv(FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d);
// FXORs/FXORd instructions
inline void fxor(FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d);
// pp 164
inline void fsqrt(FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
// fmaf instructions.
inline void fmadd(FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d);
inline void fmsub(FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d);
inline void fnmadd(FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d);
inline void fnmsub(FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d);
// pp 165
inline void flush(Register s1, Register s2);
inline void flush(Register s1, int simm13a);
// pp 167
void flushw();
// pp 168
void illtrap(int const22a);
// pp 169
void impdep1(int id1, int const19a);
void impdep2(int id1, int const19a);
// pp 170
void jmpl(Register s1, Register s2, Register d);
void jmpl(Register s1, int simm13a, Register d,
RelocationHolder const &rspec = RelocationHolder());
// 171
inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d,
RelocationHolder const &rspec = RelocationHolder());
inline void ldd(Register s1, Register s2, FloatRegister d);
inline void ldd(Register s1, int simm13a, FloatRegister d);
inline void ldfsr(Register s1, Register s2);
inline void ldfsr(Register s1, int simm13a);
inline void ldxfsr(Register s1, Register s2);
inline void ldxfsr(Register s1, int simm13a);
// 173
inline void ldfa(FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d);
inline void ldfa(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d);
// pp 175
inline void ldsb(Register s1, Register s2, Register d);
inline void ldsb(Register s1, int simm13a, Register d);
inline void ldsh(Register s1, Register s2, Register d);
inline void ldsh(Register s1, int simm13a, Register d);
inline void ldsw(Register s1, Register s2, Register d);
inline void ldsw(Register s1, int simm13a, Register d);
inline void ldub(Register s1, Register s2, Register d);
inline void ldub(Register s1, int simm13a, Register d);
inline void lduh(Register s1, Register s2, Register d);
inline void lduh(Register s1, int simm13a, Register d);
inline void lduw(Register s1, Register s2, Register d);
inline void lduw(Register s1, int simm13a, Register d);
inline void ldx(Register s1, Register s2, Register d);
inline void ldx(Register s1, int simm13a, Register d);
// pp 177
inline void ldsba(Register s1, Register s2, int ia, Register d);
inline void ldsba(Register s1, int simm13a, Register d);
inline void ldsha(Register s1, Register s2, int ia, Register d);
inline void ldsha(Register s1, int simm13a, Register d);
inline void ldswa(Register s1, Register s2, int ia, Register d);
inline void ldswa(Register s1, int simm13a, Register d);
inline void lduba(Register s1, Register s2, int ia, Register d);
inline void lduba(Register s1, int simm13a, Register d);
inline void lduha(Register s1, Register s2, int ia, Register d);
inline void lduha(Register s1, int simm13a, Register d);
inline void lduwa(Register s1, Register s2, int ia, Register d);
inline void lduwa(Register s1, int simm13a, Register d);
inline void ldxa(Register s1, Register s2, int ia, Register d);
inline void ldxa(Register s1, int simm13a, Register d);
// pp 181
inline void and3(Register s1, Register s2, Register d);
inline void and3(Register s1, int simm13a, Register d);
inline void andcc(Register s1, Register s2, Register d);
inline void andcc(Register s1, int simm13a, Register d);
inline void andn(Register s1, Register s2, Register d);
inline void andn(Register s1, int simm13a, Register d);
inline void andncc(Register s1, Register s2, Register d);
inline void andncc(Register s1, int simm13a, Register d);
inline void or3(Register s1, Register s2, Register d);
inline void or3(Register s1, int simm13a, Register d);
inline void orcc(Register s1, Register s2, Register d);
inline void orcc(Register s1, int simm13a, Register d);
inline void orn(Register s1, Register s2, Register d);
inline void orn(Register s1, int simm13a, Register d);
inline void orncc(Register s1, Register s2, Register d);
inline void orncc(Register s1, int simm13a, Register d);
inline void xor3(Register s1, Register s2, Register d);
inline void xor3(Register s1, int simm13a, Register d);
inline void xorcc(Register s1, Register s2, Register d);
inline void xorcc(Register s1, int simm13a, Register d);
inline void xnor(Register s1, Register s2, Register d);
inline void xnor(Register s1, int simm13a, Register d);
inline void xnorcc(Register s1, Register s2, Register d);
inline void xnorcc(Register s1, int simm13a, Register d);
// pp 183
inline void membar(Membar_mask_bits const7a);
// pp 185
inline void fmov(FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d);
// pp 189
inline void fmov(FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d);
// pp 191
inline void movcc(Condition c, bool floatCC, CC cca, Register s2, Register d);
inline void movcc(Condition c, bool floatCC, CC cca, int simm11a, Register d);
// pp 195
inline void movr(RCondition c, Register s1, Register s2, Register d);
inline void movr(RCondition c, Register s1, int simm10a, Register d);
// pp 196
inline void mulx(Register s1, Register s2, Register d);
inline void mulx(Register s1, int simm13a, Register d);
inline void sdivx(Register s1, Register s2, Register d);
inline void sdivx(Register s1, int simm13a, Register d);
inline void udivx(Register s1, Register s2, Register d);
inline void udivx(Register s1, int simm13a, Register d);
// pp 197
inline void umul(Register s1, Register s2, Register d);
inline void umul(Register s1, int simm13a, Register d);
inline void smul(Register s1, Register s2, Register d);
inline void smul(Register s1, int simm13a, Register d);
inline void umulcc(Register s1, Register s2, Register d);
inline void umulcc(Register s1, int simm13a, Register d);
inline void smulcc(Register s1, Register s2, Register d);
inline void smulcc(Register s1, int simm13a, Register d);
// pp 201
inline void nop();
inline void sw_count();
// pp 202
inline void popc(Register s, Register d);
inline void popc(int simm13a, Register d);
// pp 203
inline void prefetch(Register s1, Register s2, PrefetchFcn f);
inline void prefetch(Register s1, int simm13a, PrefetchFcn f);
inline void prefetcha(Register s1, Register s2, int ia, PrefetchFcn f);
inline void prefetcha(Register s1, int simm13a, PrefetchFcn f);
// pp 208
// not implementing read privileged register
inline void rdy(Register d);
inline void rdccr(Register d);
inline void rdasi(Register d);
inline void rdtick(Register d);
inline void rdpc(Register d);
inline void rdfprs(Register d);
// pp 213
inline void rett(Register s1, Register s2);
inline void rett(Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
// pp 214
inline void save(Register s1, Register s2, Register d);
inline void save(Register s1, int simm13a, Register d);
inline void restore(Register s1 = G0, Register s2 = G0, Register d = G0);
inline void restore(Register s1, int simm13a, Register d);
// pp 216
inline void saved();
inline void restored();
// pp 217
inline void sethi(int imm22a, Register d, RelocationHolder const &rspec = RelocationHolder());
// pp 218
inline void sll(Register s1, Register s2, Register d);
inline void sll(Register s1, int imm5a, Register d);
inline void srl(Register s1, Register s2, Register d);
inline void srl(Register s1, int imm5a, Register d);
inline void sra(Register s1, Register s2, Register d);
inline void sra(Register s1, int imm5a, Register d);
inline void sllx(Register s1, Register s2, Register d);
inline void sllx(Register s1, int imm6a, Register d);
inline void srlx(Register s1, Register s2, Register d);
inline void srlx(Register s1, int imm6a, Register d);
inline void srax(Register s1, Register s2, Register d);
inline void srax(Register s1, int imm6a, Register d);
// pp 220
inline void sir(int simm13a);
// pp 221
inline void stbar();
// pp 222
inline void stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
inline void stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
inline void std(FloatRegister d, Register s1, Register s2);
inline void std(FloatRegister d, Register s1, int simm13a);
inline void stfsr(Register s1, Register s2);
inline void stfsr(Register s1, int simm13a);
inline void stxfsr(Register s1, Register s2);
inline void stxfsr(Register s1, int simm13a);
// pp 224
inline void stfa(FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia);
/**代码未完, 请加载全部代码(NowJava.com).**/