/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "code/vtableStubs.hpp"
#include "interp_masm_ppc.hpp"
#include "memory/resourceArea.hpp"
#include "oops/compiledICHolder.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klass.inline.hpp"
#include "oops/klassVtable.hpp"
#include "runtime/sharedRuntime.hpp"
#include "vmreg_ppc.inline.hpp"
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
#define __ masm->
#ifndef PRODUCT
extern "C" void bad_compiled_vtable_index(JavaThread* thread, oopDesc* receiver, int index);
#endif
// Used by compiler only; may use only caller saved, non-argument registers.
VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
// Read "A word on VtableStub sizing" in share/code/vtableStubs.hpp for details on stub sizing.
const int stub_code_length = code_size_limit(true);
VtableStub* s = new(stub_code_length) VtableStub(true, vtable_index);
// Can be NULL if there is no free space in the code cache.
if (s == NULL) {
return NULL;
}
// Count unused bytes in instruction sequences of variable size.
// We add them to the computed buffer size in order to avoid
// overflow in subsequently generated stubs.
address start_pc;
int slop_bytes = 8; // just a two-instruction safety net
int slop_delta = 0;
ResourceMark rm;
CodeBuffer cb(s->entry_point(), stub_code_length);
MacroAssembler* masm = new MacroAssembler(&cb);
#if (!defined(PRODUCT) && defined(COMPILER2))
if (CountCompiledCalls) {
start_pc = __ pc();
int load_const_maxLen = 5*BytesPerInstWord; // load_const generates 5 instructions. Assume that as max size for laod_const_optimized
int offs = __ load_const_optimized(R11_scratch1, SharedRuntime::nof_megamorphic_calls_addr(), R12_scratch2, true);
slop_delta = load_const_maxLen - (__ pc() - start_pc);
slop_bytes += slop_delta;
assert(slop_delta >= 0, "negative slop(%d) encountered, adjust code size estimate!", slop_delta);
__ lwz(R12_scratch2, offs, R11_scratch1);
__ addi(R12_scratch2, R12_scratch2, 1);
__ stw(R12_scratch2, offs, R11_scratch1);
}
#endif
assert(VtableStub::receiver_location() == R3_ARG1->as_VMReg(), "receiver expected in R3_ARG1");
const Register rcvr_klass = R11_scratch1;
address npe_addr = __ pc(); // npe = null pointer exception
// check if we must do an explicit check (implicit checks disabled, offset too large).
__ null_check(R3, oopDesc::klass_offset_in_bytes(), /*implicit only*/NULL);
// Get receiver klass.
__ load_klass(rcvr_klass, R3);
#ifndef PRODUCT
if (DebugVtables) {
Label L;
// Check offset vs vtable length.
const Register vtable_len = R12_scratch2;
__ lwz(vtable_len, in_bytes(Klass::vtable_length_offset()), rcvr_klass);
__ cmpwi(CCR0, vtable_len, vtable_index*vtableEntry::size());
__ bge(CCR0, L);
__ li(R12_scratch2, vtable_index);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, bad_compiled_vtable_index), R3_ARG1, R12_scratch2, false);
__ bind(L);
}
#endif
int entry_offset = in_bytes(Klass::vtable_start_offset()) +
vtable_index*vtableEntry::size_in_bytes();
int v_off = entry_offset + vtableEntry::method_offset_in_bytes();
__ ld(R19_method, (RegisterOrConstant)v_off, rcvr_klass);
#ifndef PRODUCT
if (DebugVtables) {
Label L;
__ cmpdi(CCR0, R19_method, 0);
__ bne(CCR0, L);
__ stop("Vtable entry is ZERO", 102);
__ bind(L);
}
#endif
address ame_addr = __ pc(); // ame = abstract method error
// if the vtable entry is null, the method is abstract
// NOTE: for vtable dispatches, the vtable entry will never be null.
__ null_check(R19_method, in_bytes(Method::from_compiled_offset()), /*implicit only*/NULL);
__ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method);
__ mtctr(R12_scratch2);
__ bctr();
masm->flush();
bookkeeping(masm, tty, s, npe_addr, ame_addr, true, vtable_index, slop_bytes, 0);
return s;
}
VtableStub* VtableStubs::create_itable_stub(int itable_index) {
// Read "A word on VtableStub sizing" in share/code/vtableStubs.hpp for details on stub sizing.
const int stub_code_length = code_size_limit(false);
VtableStub* s = new(stub_code_length) VtableStub(false, itable_index);
// Can be NULL if there is no free space in the code cache.
if (s == NULL) {
return NULL;
}
// Count unused bytes in instruction sequences of variable size.
// We add them to the computed buffer size in order to avoid
// overflow in subsequently generated stubs.
address start_pc;
int slop_bytes = 8; // just a two-instruction safety net
int slop_delta = 0;
ResourceMark rm;
CodeBuffer cb(s->entry_point(), stub_code_length);
MacroAssembler* masm = new MacroAssembler(&cb);
int load_const_maxLen = 5*BytesPerInstWord; // load_const generates 5 instructions. Assume that as max size for laod_const_optimized
#if (!defined(PRODUCT) && defined(COMPILER2))
if (CountCompiledCalls) {
start_pc = __ pc();
int offs = __ load_const_optimized(R11_scratch1, SharedRuntime::nof_megamorphic_calls_addr(), R12_scratch2, true);
slop_delta = load_const_maxLen - (__ pc() - start_pc);
slop_bytes += slop_delta;
assert(slop_delta >= 0, "negative slop(%d) encountered, adjust code size estimate!", slop_delta);
__ lwz(R12_scratch2, offs, R11_scratch1);
__ addi(R12_scratch2, R12_scratch2, 1);
__ stw(R12_scratch2, offs, R11_scratch1);
}
#endif
assert(VtableStub::receiver_location() == R3_ARG1->as_VMReg(), "receiver expected in R3_ARG1");
// Entry arguments:
// R19_method: Interface
// R3_ARG1: Receiver
Label L_no_such_interface;
const Register rcvr_klass = R11_scratch1,
interface = R12_scratch2,
tmp1 = R21_tmp1,
tmp2 = R22_tmp2;
address npe_addr = __ pc(); // npe = null pointer exception
__ null_check(R3_ARG1, oopDesc::klass_offset_in_bytes(), /*implicit only*/NULL);
__ load_klass(rcvr_klass, R3_ARG1);
// Receiver subtype check against REFC.
__ ld(interface, CompiledICHolder::holder_klass_offset(), R19_method);
__ lookup_interface_method(rcvr_klass, interface, noreg,
R0, tmp1, tmp2,
L_no_such_interface, /*return_method=*/ false);
// Get Method* and entrypoint for compiler
__ ld(interface, CompiledICHolder::holder_metadata_offset(), R19_method);
__ lookup_interface_method(rcvr_klass, interface, itable_index,
R19_method, tmp1, tmp2,
L_no_such_interface, /*return_method=*/ true);
#ifndef PRODUCT
if (DebugVtables) {
Label ok;
__ cmpd(CCR0, R19_method, 0);
__ bne(CCR0, ok);
__ stop("method is null", 103);
__ bind(ok);
}
#endif
// If the vtable entry is null, the method is abstract.
address ame_addr = __ pc(); // ame = abstract method error
// Must do an explicit check if implicit checks are disabled.
__ null_check(R19_method, in_bytes(Method::from_compiled_offset()), &L_no_such_interface);
__ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method);
__ mtctr(R12_scratch2);
__ bctr();
/**代码未完, 请加载全部代码(NowJava.com).**/