JDK14/Java14源码在线阅读

JDK14/Java14源码在线阅读 / hotspot / cpu / ppc / macroAssembler_ppc.cpp
/*
 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2012, 2019, SAP SE. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/resourceArea.hpp"
#include "nativeInst_ppc.hpp"
#include "oops/klass.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/icache.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/macros.hpp"
#ifdef COMPILER2
#include "opto/intrinsicnode.hpp"
#endif

#ifdef PRODUCT
#define BLOCK_COMMENT(str) // nothing
#else
#define BLOCK_COMMENT(str) block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")

#ifdef ASSERT
// On RISC, there's no benefit to verifying instruction boundaries.
bool AbstractAssembler::pd_check_instruction_mark() { return false; }
#endif

void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) {
  assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range");
  if (Assembler::is_simm(si31, 16)) {
    ld(d, si31, a);
    if (emit_filler_nop) nop();
  } else {
    const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31);
    const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31);
    addis(d, a, hi);
    ld(d, lo, d);
  }
}

void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) {
  assert_different_registers(d, a);
  ld_largeoffset_unchecked(d, si31, a, emit_filler_nop);
}

void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base,
                                      size_t size_in_bytes, bool is_signed) {
  switch (size_in_bytes) {
  case  8:              ld(dst, offs, base);                         break;
  case  4:  is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break;
  case  2:  is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break;
  case  1:  lbz(dst, offs, base); if (is_signed) extsb(dst, dst);    break; // lba doesn't exist :(
  default:  ShouldNotReachHere();
  }
}

void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base,
                                       size_t size_in_bytes) {
  switch (size_in_bytes) {
  case  8:  std(dst, offs, base); break;
  case  4:  stw(dst, offs, base); break;
  case  2:  sth(dst, offs, base); break;
  case  1:  stb(dst, offs, base); break;
  default:  ShouldNotReachHere();
  }
}

void MacroAssembler::align(int modulus, int max, int rem) {
  int padding = (rem + modulus - (offset() % modulus)) % modulus;
  if (padding > max) return;
  for (int c = (padding >> 2); c > 0; --c) { nop(); }
}

// Issue instructions that calculate given TOC from global TOC.
void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16,
                                                       bool add_relocation, bool emit_dummy_addr) {
  int offset = -1;
  if (emit_dummy_addr) {
    offset = -128; // dummy address
  } else if (addr != (address)(intptr_t)-1) {
    offset = MacroAssembler::offset_to_global_toc(addr);
  }

  if (hi16) {
    addis(dst, R29_TOC, MacroAssembler::largeoffset_si16_si16_hi(offset));
  }
  if (lo16) {
    if (add_relocation) {
      // Relocate at the addi to avoid confusion with a load from the method's TOC.
      relocate(internal_word_Relocation::spec(addr));
    }
    addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset));
  }
}

address MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) {
  const int offset = MacroAssembler::offset_to_global_toc(addr);

  const address inst2_addr = a;
  const int inst2 = *(int *)inst2_addr;

  // The relocation points to the second instruction, the addi,
  // and the addi reads and writes the same register dst.
  const int dst = inv_rt_field(inst2);
  assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");

  // Now, find the preceding addis which writes to dst.
  int inst1 = 0;
  address inst1_addr = inst2_addr - BytesPerInstWord;
  while (inst1_addr >= bound) {
    inst1 = *(int *) inst1_addr;
    if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
      // Stop, found the addis which writes dst.
      break;
    }
    inst1_addr -= BytesPerInstWord;
  }

  assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
  set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset));
  set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset));
  return inst1_addr;
}

address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) {
  const address inst2_addr = a;
  const int inst2 = *(int *)inst2_addr;

  // The relocation points to the second instruction, the addi,
  // and the addi reads and writes the same register dst.
  const int dst = inv_rt_field(inst2);
  assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");

  // Now, find the preceding addis which writes to dst.
  int inst1 = 0;
  address inst1_addr = inst2_addr - BytesPerInstWord;
  while (inst1_addr >= bound) {
    inst1 = *(int *) inst1_addr;
    if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
      // stop, found the addis which writes dst
      break;
    }
    inst1_addr -= BytesPerInstWord;
  }

  assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");

  int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0);
  // -1 is a special case
  if (offset == -1) {
    return (address)(intptr_t)-1;
  } else {
    return global_toc() + offset;
  }
}

#ifdef _LP64
// Patch compressed oops or klass constants.
// Assembler sequence is
// 1) compressed oops:
//    lis  rx = const.hi
//    ori rx = rx | const.lo
// 2) compressed klass:
//    lis  rx = const.hi
//    clrldi rx = rx & 0xFFFFffff // clearMS32b, optional
//    ori rx = rx | const.lo
// Clrldi will be passed by.
address MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) {
  assert(UseCompressedOops, "Should only patch compressed oops");

  const address inst2_addr = a;
  const int inst2 = *(int *)inst2_addr;

  // The relocation points to the second instruction, the ori,
  // and the ori reads and writes the same register dst.
  const int dst = inv_rta_field(inst2);
  assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
  // Now, find the preceding addis which writes to dst.
  int inst1 = 0;
  address inst1_addr = inst2_addr - BytesPerInstWord;
  bool inst1_found = false;
  while (inst1_addr >= bound) {
    inst1 = *(int *)inst1_addr;
    if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; }
    inst1_addr -= BytesPerInstWord;
  }
  assert(inst1_found, "inst is not lis");

  int xc = (data >> 16) & 0xffff;
  int xd = (data >>  0) & 0xffff;

  set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo
  set_imm((int *)inst2_addr,        (xd)); // unsigned int
  return inst1_addr;
}

// Get compressed oop or klass constant.
narrowOop MacroAssembler::get_narrow_oop(address a, address bound) {
  assert(UseCompressedOops, "Should only patch compressed oops");

  const address inst2_addr = a;
  const int inst2 = *(int *)inst2_addr;

  // The relocation points to the second instruction, the ori,
  // and the ori reads and writes the same register dst.
  const int dst = inv_rta_field(inst2);
  assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
  // Now, find the preceding lis which writes to dst.
  int inst1 = 0;
  address inst1_addr = inst2_addr - BytesPerInstWord;
  bool inst1_found = false;

  while (inst1_addr >= bound) {
    inst1 = *(int *) inst1_addr;
    if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;}
    inst1_addr -= BytesPerInstWord;
  }
  assert(inst1_found, "inst is not lis");

  uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff));
  uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16);

  return (int) (xl | xh);
}
#endif // _LP64

// Returns true if successful.
bool MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a,
                                                Register toc, bool fixed_size) {
  int toc_offset = 0;
  // Use RelocationHolder::none for the constant pool entry, otherwise
  // we will end up with a failing NativeCall::verify(x) where x is
  // the address of the constant pool entry.
  // FIXME: We should insert relocation information for oops at the constant
  // pool entries instead of inserting it at the loads; patching of a constant
  // pool entry should be less expensive.
  address const_address = address_constant((address)a.value(), RelocationHolder::none);
  if (const_address == NULL) { return false; } // allocation failure
  // Relocate at the pc of the load.
  relocate(a.rspec());
  toc_offset = (int)(const_address - code()->consts()->start());
  ld_largeoffset_unchecked(dst, toc_offset, toc, fixed_size);
  return true;
}

bool MacroAssembler::is_load_const_from_method_toc_at(address a) {
  const address inst1_addr = a;
  const int inst1 = *(int *)inst1_addr;

   // The relocation points to the ld or the addis.
   return (is_ld(inst1)) ||
          (is_addis(inst1) && inv_ra_field(inst1) != 0);
}

int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) {
  assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc");

  const address inst1_addr = a;
  const int inst1 = *(int *)inst1_addr;

  if (is_ld(inst1)) {
    return inv_d1_field(inst1);
  } else if (is_addis(inst1)) {
    const int dst = inv_rt_field(inst1);

    // Now, find the succeeding ld which reads and writes to dst.
    address inst2_addr = inst1_addr + BytesPerInstWord;
    int inst2 = 0;
    while (true) {
      inst2 = *(int *) inst2_addr;
      if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) {
        // Stop, found the ld which reads and writes dst.
        break;
      }
      inst2_addr += BytesPerInstWord;
    }
    return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
  }
  ShouldNotReachHere();
  return 0;
}

// Get the constant from a `load_const' sequence.
long MacroAssembler::get_const(address a) {
  assert(is_load_const_at(a), "not a load of a constant");
  const int *p = (const int*) a;
  unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48);
  if (is_ori(*(p+1))) {
    x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32);
    x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16);
    x |= (((unsigned long) (get_imm(a,4) & 0xffff)));
  } else if (is_lis(*(p+1))) {
    x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32);
    x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16);
    x |= (((unsigned long) (get_imm(a,3) & 0xffff)));
  } else {
    ShouldNotReachHere();
    return (long) 0;
  }
  return (long) x;
}

// Patch the 64 bit constant of a `load_const' sequence. This is a low
// level procedure. It neither flushes the instruction cache nor is it
// mt safe.
void MacroAssembler::patch_const(address a, long x) {
  assert(is_load_const_at(a), "not a load of a constant");
  int *p = (int*) a;
  if (is_ori(*(p+1))) {
    set_imm(0 + p, (x >> 48) & 0xffff);
    set_imm(1 + p, (x >> 32) & 0xffff);
    set_imm(3 + p, (x >> 16) & 0xffff);
    set_imm(4 + p, x & 0xffff);
  } else if (is_lis(*(p+1))) {
    set_imm(0 + p, (x >> 48) & 0xffff);
    set_imm(2 + p, (x >> 32) & 0xffff);
    set_imm(1 + p, (x >> 16) & 0xffff);
    set_imm(3 + p, x & 0xffff);
  } else {
    ShouldNotReachHere();
  }
}

AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
  int index = oop_recorder()->allocate_metadata_index(obj);
  RelocationHolder rspec = metadata_Relocation::spec(index);
  return AddressLiteral((address)obj, rspec);
}

AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
  int index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = metadata_Relocation::spec(index);
  return AddressLiteral((address)obj, rspec);
}

AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->allocate_oop_index(obj);
  return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
}

AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
}

RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
                                                      Register tmp, int offset) {
  intptr_t value = *delayed_value_addr;
  if (value != 0) {
    return RegisterOrConstant(value + offset);
  }

  // Load indirectly to solve generation ordering problem.
  // static address, no relocation
  int simm16_offset = load_const_optimized(tmp, delayed_value_addr, noreg, true);
  ld(tmp, simm16_offset, tmp); // must be aligned ((xa & 3) == 0)

  if (offset != 0) {
    addi(tmp, tmp, offset);
  }

  return RegisterOrConstant(tmp);
}

#ifndef PRODUCT
void MacroAssembler::pd_print_patched_instruction(address branch) {
  Unimplemented(); // TODO: PPC port
}
#endif // ndef PRODUCT

// Conditional far branch for destinations encodable in 24+2 bits.
void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) {

  // If requested by flag optimize, relocate the bc_far as a
  // runtime_call and prepare for optimizing it when the code gets
  // relocated.
  if (optimize == bc_far_optimize_on_relocate) {
    relocate(relocInfo::runtime_call_type);
  }

  // variant 2:
  //
  //    b!cxx SKIP
  //    bxx   DEST
  //  SKIP:
  //

  const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
                                                opposite_bcond(inv_boint_bcond(boint)));

  // We emit two branches.
  // First, a conditional branch which jumps around the far branch.
  const address not_taken_pc = pc() + 2 * BytesPerInstWord;
  const address bc_pc        = pc();
  bc(opposite_boint, biint, not_taken_pc);

  const int bc_instr = *(int*)bc_pc;
  assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition");
  assert(opposite_boint == inv_bo_field(bc_instr), "postcondition");
  assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))),
                                     opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))),
         "postcondition");
  assert(biint == inv_bi_field(bc_instr), "postcondition");

  // Second, an unconditional far branch which jumps to dest.
  // Note: target(dest) remembers the current pc (see CodeSection::target)
  //       and returns the current pc if the label is not bound yet; when
  //       the label gets bound, the unconditional far branch will be patched.
  const address target_pc = target(dest);
  const address b_pc  = pc();
  b(target_pc);

  assert(not_taken_pc == pc(),                     "postcondition");
  assert(dest.is_bound() || target_pc == b_pc, "postcondition");
}

// 1 or 2 instructions
void MacroAssembler::bc_far_optimized(int boint, int biint, Label& dest) {
  if (dest.is_bound() && is_within_range_of_bcxx(target(dest), pc())) {
    bc(boint, biint, dest);
  } else {
    bc_far(boint, biint, dest, MacroAssembler::bc_far_optimize_on_relocate);
  }
}

bool MacroAssembler::is_bc_far_at(address instruction_addr) {
  return is_bc_far_variant1_at(instruction_addr) ||
         is_bc_far_variant2_at(instruction_addr) ||
         is_bc_far_variant3_at(instruction_addr);
}

address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) {
  if (is_bc_far_variant1_at(instruction_addr)) {
    const address instruction_1_addr = instruction_addr;
    const int instruction_1 = *(int*)instruction_1_addr;
    return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr);
  } else if (is_bc_far_variant2_at(instruction_addr)) {
    const address instruction_2_addr = instruction_addr + 4;
    return bxx_destination(instruction_2_addr);
  } else if (is_bc_far_variant3_at(instruction_addr)) {
    return instruction_addr + 8;
  }
  // variant 4 ???
  ShouldNotReachHere();
  return NULL;
}
void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) {

  if (is_bc_far_variant3_at(instruction_addr)) {
    // variant 3, far cond branch to the next instruction, already patched to nops:
    //
    //    nop
    //    endgroup
    //  SKIP/DEST:
    //
    return;
  }

  // first, extract boint and biint from the current branch
  int boint = 0;
  int biint = 0;

  ResourceMark rm;
  const int code_size = 2 * BytesPerInstWord;
  CodeBuffer buf(instruction_addr, code_size);
  MacroAssembler masm(&buf);
  if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) {
    // Far branch to next instruction: Optimize it by patching nops (produce variant 3).
    masm.nop();
    masm.endgroup();
  } else {
    if (is_bc_far_variant1_at(instruction_addr)) {
      // variant 1, the 1st instruction contains the destination address:
      //
      //    bcxx  DEST
      //    nop
      //
      const int instruction_1 = *(int*)(instruction_addr);
      boint = inv_bo_field(instruction_1);
      biint = inv_bi_field(instruction_1);
    } else if (is_bc_far_variant2_at(instruction_addr)) {
      // variant 2, the 2nd instruction contains the destination address:
      //
      //    b!cxx SKIP
      //    bxx   DEST
      //  SKIP:
      //
      const int instruction_1 = *(int*)(instruction_addr);
      boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))),
          opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1))));
      biint = inv_bi_field(instruction_1);
    } else {
      // variant 4???
      ShouldNotReachHere();
    }

    // second, set the new branch destination and optimize the code
    if (dest != instruction_addr + 4 && // the bc_far is still unbound!
        masm.is_within_range_of_bcxx(dest, instruction_addr)) {
      // variant 1:
      //
      //    bcxx  DEST
      //    nop
      //
      masm.bc(boint, biint, dest);
      masm.nop();
    } else {
      // variant 2:
      //
      //    b!cxx SKIP
      //    bxx   DEST
      //  SKIP:
      //
      const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
                                                    opposite_bcond(inv_boint_bcond(boint)));
      const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord;
      masm.bc(opposite_boint, biint, not_taken_pc);
      masm.b(dest);
    }
  }
  ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
}

// Emit a NOT mt-safe patchable 64 bit absolute call/jump.
void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) {
  // get current pc
  uint64_t start_pc = (uint64_t) pc();

  const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last
  const address pc_of_b  = (address) (start_pc + (0*BytesPerInstWord)); // b is first

  // relocate here
  if (rt != relocInfo::none) {
    relocate(rt);
  }

  if ( ReoptimizeCallSequences &&
       (( link && is_within_range_of_b(dest, pc_of_bl)) ||
        (!link && is_within_range_of_b(dest, pc_of_b)))) {
    // variant 2:
    // Emit an optimized, pc-relative call/jump.

    if (link) {
      // some padding
      nop();
      nop();
      nop();
      nop();
      nop();
      nop();

      // do the call
      assert(pc() == pc_of_bl, "just checking");
      bl(dest, relocInfo::none);
    } else {
      // do the jump
      assert(pc() == pc_of_b, "just checking");
      b(dest, relocInfo::none);

      // some padding
      nop();
      nop();
      nop();
      nop();
      nop();
      nop();
    }

    // Assert that we can identify the emitted call/jump.
    assert(is_bxx64_patchable_variant2_at((address)start_pc, link),
           "can't identify emitted call");
  } else {
    // variant 1:
    mr(R0, R11);  // spill R11 -> R0.

    // Load the destination address into CTR,
    // calculate destination relative to global toc.
    calculate_address_from_global_toc(R11, dest, true, true, false);

    mtctr(R11);
    mr(R11, R0);  // spill R11 <- R0.
    nop();

    // do the call/jump
    if (link) {
      bctrl();
    } else{
      bctr();
    }
    // Assert that we can identify the emitted call/jump.
    assert(is_bxx64_patchable_variant1b_at((address)start_pc, link),
           "can't identify emitted call");
  }

  // Assert that we can identify the emitted call/jump.
  assert(is_bxx64_patchable_at((address)start_pc, link),
         "can't identify emitted call");
  assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest,
         "wrong encoding of dest address");
}

// Identify a bxx64_patchable instruction.
bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) {
  return is_bxx64_patchable_variant1b_at(instruction_addr, link)
    //|| is_bxx64_patchable_variant1_at(instruction_addr, link)
      || is_bxx64_patchable_variant2_at(instruction_addr, link);
}

// Does the call64_patchable instruction use a pc-relative encoding of
// the call destination?
bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) {
  // variant 2 is pc-relative
  return is_bxx64_patchable_variant2_at(instruction_addr, link);
}

// Identify variant 1.
bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) {
  unsigned int* instr = (unsigned int*) instruction_addr;
  return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
      && is_mtctr(instr[5]) // mtctr
    && is_load_const_at(instruction_addr);
}

// Identify variant 1b: load destination relative to global toc.
bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) {
  unsigned int* instr = (unsigned int*) instruction_addr;
  return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
    && is_mtctr(instr[3]) // mtctr
    && is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr);
}

// Identify variant 2.
bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) {
  unsigned int* instr = (unsigned int*) instruction_addr;
  if (link) {
    return is_bl (instr[6])  // bl dest is last
      && is_nop(instr[0])  // nop
      && is_nop(instr[1])  // nop
      && is_nop(instr[2])  // nop
      && is_nop(instr[3])  // nop
      && is_nop(instr[4])  // nop
      && is_nop(instr[5]); // nop
  } else {
    return is_b  (instr[0])  // b  dest is first
      && is_nop(instr[1])  // nop
      && is_nop(instr[2])  // nop
      && is_nop(instr[3])  // nop
      && is_nop(instr[4])  // nop
      && is_nop(instr[5])  // nop
      && is_nop(instr[6]); // nop
  }
}

// Set dest address of a bxx64_patchable instruction.
void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) {
  ResourceMark rm;
  int code_size = MacroAssembler::bxx64_patchable_size;
  CodeBuffer buf(instruction_addr, code_size);
  MacroAssembler masm(&buf);
  masm.bxx64_patchable(dest, relocInfo::none, link);
  ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
}

// Get dest address of a bxx64_patchable instruction.
address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) {
  if (is_bxx64_patchable_variant1_at(instruction_addr, link)) {
    return (address) (unsigned long) get_const(instruction_addr);
  } else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) {
    unsigned int* instr = (unsigned int*) instruction_addr;
    if (link) {
      const int instr_idx = 6; // bl is last
      int branchoffset = branch_destination(instr[instr_idx], 0);
      return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
    } else {
      const int instr_idx = 0; // b is first
      int branchoffset = branch_destination(instr[instr_idx], 0);
      return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
    }
  // Load dest relative to global toc.
  } else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) {
    return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord,
                                                               instruction_addr);
  } else {
    ShouldNotReachHere();
    return NULL;
  }
}

// Uses ordering which corresponds to ABI:
//    _savegpr0_14:  std  r14,-144(r1)
//    _savegpr0_15:  std  r15,-136(r1)
//    _savegpr0_16:  std  r16,-128(r1)
void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) {
  std(R14, offset, dst);   offset += 8;
  std(R15, offset, dst);   offset += 8;
  std(R16, offset, dst);   offset += 8;
  std(R17, offset, dst);   offset += 8;
  std(R18, offset, dst);   offset += 8;
  std(R19, offset, dst);   offset += 8;
  std(R20, offset, dst);   offset += 8;
  std(R21, offset, dst);   offset += 8;
  std(R22, offset, dst);   offset += 8;
  std(R23, offset, dst);   offset += 8;
  std(R24, offset, dst);   offset += 8;
  std(R25, offset, dst);   offset += 8;
  std(R26, offset, dst);   offset += 8;
  std(R27, offset, dst);   offset += 8;
  std(R28, offset, dst);   offset += 8;
  std(R29, offset, dst);   offset += 8;
  std(R30, offset, dst);   offset += 8;
  std(R31, offset, dst);   offset += 8;

  stfd(F14, offset, dst);   offset += 8;
  stfd(F15, offset, dst);   offset += 8;
  stfd(F16, offset, dst);   offset += 8;
  stfd(F17, offset, dst);   offset += 8;
  stfd(F18, offset, dst);   offset += 8;
  stfd(F19, offset, dst);   offset += 8;
  stfd(F20, offset, dst);   offset += 8;
  stfd(F21, offset, dst);   offset += 8;
  stfd(F22, offset, dst);   offset += 8;
  stfd(F23, offset, dst);   offset += 8;
  stfd(F24, offset, dst);   offset += 8;
  stfd(F25, offset, dst);   offset += 8;
  stfd(F26, offset, dst);   offset += 8;
  stfd(F27, offset, dst);   offset += 8;
  stfd(F28, offset, dst);   offset += 8;
  stfd(F29, offset, dst);   offset += 8;
  stfd(F30, offset, dst);   offset += 8;
  stfd(F31, offset, dst);
}

// Uses ordering which corresponds to ABI:
//    _restgpr0_14:  ld   r14,-144(r1)
//    _restgpr0_15:  ld   r15,-136(r1)
//    _restgpr0_16:  ld   r16,-128(r1)
void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) {
  ld(R14, offset, src);   offset += 8;
  ld(R15, offset, src);   offset += 8;
  ld(R16, offset, src);   offset += 8;
  ld(R17, offset, src);   offset += 8;
  ld(R18, offset, src);   offset += 8;
  ld(R19, offset, src);   offset += 8;
  ld(R20, offset, src);   offset += 8;
  ld(R21, offset, src);   offset += 8;
  ld(R22, offset, src);   offset += 8;
  ld(R23, offset, src);   offset += 8;
  ld(R24, offset, src);   offset += 8;
  ld(R25, offset, src);   offset += 8;
  ld(R26, offset, src);   offset += 8;
  ld(R27, offset, src);   offset += 8;
  ld(R28, offset, src);   offset += 8;
  ld(R29, offset, src);   offset += 8;
  ld(R30, offset, src);   offset += 8;
  ld(R31, offset, src);   offset += 8;

  // FP registers
  lfd(F14, offset, src);   offset += 8;
  lfd(F15, offset, src);   offset += 8;
  lfd(F16, offset, src);   offset += 8;
  lfd(F17, offset, src);   offset += 8;
  lfd(F18, offset, src);   offset += 8;
  lfd(F19, offset, src);   offset += 8;
  lfd(F20, offset, src);   offset += 8;
  lfd(F21, offset, src);   offset += 8;
  lfd(F22, offset, src);   offset += 8;
  lfd(F23, offset, src);   offset += 8;
  lfd(F24, offset, src);   offset += 8;
  lfd(F25, offset, src);   offset += 8;
  lfd(F26, offset, src);   offset += 8;
  lfd(F27, offset, src);   offset += 8;
  lfd(F28, offset, src);   offset += 8;
  lfd(F29, offset, src);   offset += 8;
  lfd(F30, offset, src);   offset += 8;
  lfd(F31, offset, src);
}

// For verify_oops.
void MacroAssembler::save_volatile_gprs(Register dst, int offset) {
  std(R2,  offset, dst);   offset += 8;
  std(R3,  offset, dst);   offset += 8;
  std(R4,  offset, dst);   offset += 8;
  std(R5,  offset, dst);   offset += 8;
  std(R6,  offset, dst);   offset += 8;
  std(R7,  offset, dst);   offset += 8;
  std(R8,  offset, dst);   offset += 8;
  std(R9,  offset, dst);   offset += 8;
  std(R10, offset, dst);   offset += 8;
  std(R11, offset, dst);   offset += 8;
  std(R12, offset, dst);   offset += 8;

  stfd(F0, offset, dst);   offset += 8;
  stfd(F1, offset, dst);   offset += 8;
  stfd(F2, offset, dst);   offset += 8;
  stfd(F3, offset, dst);   offset += 8;
  stfd(F4, offset, dst);   offset += 8;
  stfd(F5, offset, dst);   offset += 8;
  stfd(F6, offset, dst);   offset += 8;
  stfd(F7, offset, dst);   offset += 8;
  stfd(F8, offset, dst);   offset += 8;
  stfd(F9, offset, dst);   offset += 8;
  stfd(F10, offset, dst);  offset += 8;
  stfd(F11, offset, dst);  offset += 8;
  stfd(F12, offset, dst);  offset += 8;
  stfd(F13, offset, dst);
}

// For verify_oops.
void MacroAssembler::restore_volatile_gprs(Register src, int offset) {
  ld(R2,  offset, src);   offset += 8;
  ld(R3,  offset, src);   offset += 8;
  ld(R4,  offset, src);   offset += 8;
  ld(R5,  offset, src);   offset += 8;
  ld(R6,  offset, src);   offset += 8;
  ld(R7,  offset, src);   offset += 8;
  ld(R8,  offset, src);   offset += 8;
  ld(R9,  offset, src);   offset += 8;
  ld(R10, offset, src);   offset += 8;
  ld(R11, offset, src);   offset += 8;
  ld(R12, offset, src);   offset += 8;

  lfd(F0, offset, src);   offset += 8;
  lfd(F1, offset, src);   offset += 8;
  lfd(F2, offset, src);   offset += 8;
  lfd(F3, offset, src);   offset += 8;
  lfd(F4, offset, src);   offset += 8;
  lfd(F5, offset, src);   offset += 8;
  lfd(F6, offset, src);   offset += 8;
  lfd(F7, offset, src);   offset += 8;
  lfd(F8, offset, src);   offset += 8;
  lfd(F9, offset, src);   offset += 8;
  lfd(F10, offset, src);  offset += 8;
  lfd(F11, offset, src);  offset += 8;
  lfd(F12, offset, src);  offset += 8;
  lfd(F13, offset, src);
}

void MacroAssembler::save_LR_CR(Register tmp) {
  mfcr(tmp);
  std(tmp, _abi(cr), R1_SP);
  mflr(tmp);
  std(tmp, _abi(lr), R1_SP);
  // Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad)
}

void MacroAssembler::restore_LR_CR(Register tmp) {
  assert(tmp != R1_SP, "must be distinct");
  ld(tmp, _abi(lr), R1_SP);
  mtlr(tmp);
  ld(tmp, _abi(cr), R1_SP);
  mtcr(tmp);
}

address MacroAssembler::get_PC_trash_LR(Register result) {
  Label L;
  bl(L);
  bind(L);
  address lr_pc = pc();
  mflr(result);
  return lr_pc;
}

void MacroAssembler::resize_frame(Register offset, Register tmp) {
#ifdef ASSERT
  assert_different_registers(offset, tmp, R1_SP);
  andi_(tmp, offset, frame::alignment_in_bytes-1);
  asm_assert_eq("resize_frame: unaligned", 0x204);
#endif

  // tmp <- *(SP)
  ld(tmp, _abi(callers_sp), R1_SP);
  // addr <- SP + offset;
  // *(addr) <- tmp;
  // SP <- addr
  stdux(tmp, R1_SP, offset);
}

void MacroAssembler::resize_frame(int offset, Register tmp) {
  assert(is_simm(offset, 16), "too big an offset");
  assert_different_registers(tmp, R1_SP);
  assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned");
  // tmp <- *(SP)
  ld(tmp, _abi(callers_sp), R1_SP);
  // addr <- SP + offset;
  // *(addr) <- tmp;
  // SP <- addr
  stdu(tmp, offset, R1_SP);
}

void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) {
  // (addr == tmp1) || (addr == tmp2) is allowed here!
  assert(tmp1 != tmp2, "must be distinct");

  // compute offset w.r.t. current stack pointer
  // tmp_1 <- addr - SP (!)
  subf(tmp1, R1_SP, addr);

  // atomically update SP keeping back link.
  resize_frame(tmp1/* offset */, tmp2/* tmp */);
}

void MacroAssembler::push_frame(Register bytes, Register tmp) {
#ifdef ASSERT
  assert(bytes != R0, "r0 not allowed here");
  andi_(R0, bytes, frame::alignment_in_bytes-1);
  asm_assert_eq("push_frame(Reg, Reg): unaligned", 0x203);
#endif
  neg(tmp, bytes);
  stdux(R1_SP, R1_SP, tmp);
}

// Push a frame of size `bytes'.
void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
  long offset = align_addr(bytes, frame::alignment_in_bytes);
  if (is_simm(-offset, 16)) {
    stdu(R1_SP, -offset, R1_SP);
  } else {
    load_const_optimized(tmp, -offset);
    stdux(R1_SP, R1_SP, tmp);
  }
}

// Push a frame of size `bytes' plus abi_reg_args on top.
void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) {
  push_frame(bytes + frame::abi_reg_args_size, tmp);
}

// Setup up a new C frame with a spill area for non-volatile GPRs and
// additional space for local variables.
void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes,
                                                      Register tmp) {
  push_frame(bytes + frame::abi_reg_args_size + frame::spill_nonvolatiles_size, tmp);
}

// Pop current C frame.
void MacroAssembler::pop_frame() {
  ld(R1_SP, _abi(callers_sp), R1_SP);
}

#if defined(ABI_ELFv2)
address MacroAssembler::branch_to(Register r_function_entry, bool and_link) {
  // TODO(asmundak): make sure the caller uses R12 as function descriptor
  // most of the times.
  if (R12 != r_function_entry) {
    mr(R12, r_function_entry);
  }
  mtctr(R12);
  // Do a call or a branch.
  if (and_link) {
    bctrl();
  } else {
    bctr();
  }
  _last_calls_return_pc = pc();

  return _last_calls_return_pc;
}

// Call a C function via a function descriptor and use full C
// calling conventions. Updates and returns _last_calls_return_pc.
address MacroAssembler::call_c(Register r_function_entry) {
  return branch_to(r_function_entry, /*and_link=*/true);
}

// For tail calls: only branch, don't link, so callee returns to caller of this function.
address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) {
  return branch_to(r_function_entry, /*and_link=*/false);
}

address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) {
  load_const(R12, function_entry, R0);
  return branch_to(R12,  /*and_link=*/true);
}

#else
// Generic version of a call to C function via a function descriptor
// with variable support for C calling conventions (TOC, ENV, etc.).
// Updates and returns _last_calls_return_pc.
address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
                                  bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) {
  // we emit standard ptrgl glue code here
  assert((function_descriptor != R0), "function_descriptor cannot be R0");

  // retrieve necessary entries from the function descriptor
  ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor);
  mtctr(R0);

  if (load_toc_of_callee) {
    ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor);
  }
  if (load_env_of_callee) {
    ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor);
  } else if (load_toc_of_callee) {
    li(R11, 0);
  }

  // do a call or a branch
  if (and_link) {
    bctrl();
  } else {
    bctr();
  }
  _last_calls_return_pc = pc();

  return _last_calls_return_pc;
}

// Call a C function via a function descriptor and use full C calling
// conventions.
// We don't use the TOC in generated code, so there is no need to save
// and restore its value.
address MacroAssembler::call_c(Register fd) {
  return branch_to(fd, /*and_link=*/true,
                       /*save toc=*/false,
                       /*restore toc=*/false,
                       /*load toc=*/true,
                       /*load env=*/true);
}

address MacroAssembler::call_c_and_return_to_caller(Register fd) {
  return branch_to(fd, /*and_link=*/false,
                       /*save toc=*/false,
                       /*restore toc=*/false,
                       /*load toc=*/true,
                       /*load env=*/true);
}

address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) {
  if (rt != relocInfo::none) {
    // this call needs to be relocatable
    if (!ReoptimizeCallSequences
        || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
        || fd == NULL   // support code-size estimation
        || !fd->is_friend_function()
        || fd->entry() == NULL) {
      // it's not a friend function as defined by class FunctionDescriptor,
      // so do a full call-c here.
      load_const(R11, (address)fd, R0);

      bool has_env = (fd != NULL && fd->env() != NULL);
      return branch_to(R11, /*and_link=*/true,
                            /*save toc=*/false,
                            /*restore toc=*/false,
                            /*load toc=*/true,
                            /*load env=*/has_env);
    } else {
      // It's a friend function. Load the entry point and don't care about
      // toc and env. Use an optimizable call instruction, but ensure the
      // same code-size as in the case of a non-friend function.
      nop();
      nop();
      nop();
      bl64_patchable(fd->entry(), rt);
      _last_calls_return_pc = pc();
      return _last_calls_return_pc;
    }
  } else {
    // This call does not need to be relocatable, do more aggressive
    // optimizations.
    if (!ReoptimizeCallSequences
      || !fd->is_friend_function()) {
      // It's not a friend function as defined by class FunctionDescriptor,
      // so do a full call-c here.
      load_const(R11, (address)fd, R0);
      return branch_to(R11, /*and_link=*/true,
                            /*save toc=*/false,
                            /*restore toc=*/false,
                            /*load toc=*/true,
                            /*load env=*/true);
    } else {
      // it's a friend function, load the entry point and don't care about
      // toc and env.
      address dest = fd->entry();
      if (is_within_range_of_b(dest, pc())) {
        bl(dest);
      } else {
        bl64_patchable(dest, rt);
      }
      _last_calls_return_pc = pc();
      return _last_calls_return_pc;
    }
  }
}

// Call a C function.  All constants needed reside in TOC.
//
// Read the address to call from the TOC.
// Read env from TOC, if fd specifies an env.
// Read new TOC from TOC.
address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
                                         relocInfo::relocType rt, Register toc) {
  if (!ReoptimizeCallSequences
    || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
    || !fd->is_friend_function()) {
    // It's not a friend function as defined by class FunctionDescriptor,
    // so do a full call-c here.
    assert(fd->entry() != NULL, "function must be linked");

    AddressLiteral fd_entry(fd->entry());
    bool success = load_const_from_method_toc(R11, fd_entry, toc, /*fixed_size*/ true);
    mtctr(R11);
    if (fd->env() == NULL) {
      li(R11, 0);
      nop();
    } else {
      AddressLiteral fd_env(fd->env());
      success = success && load_const_from_method_toc(R11, fd_env, toc, /*fixed_size*/ true);
    }
    AddressLiteral fd_toc(fd->toc());
    // Set R2_TOC (load from toc)
    success = success && load_const_from_method_toc(R2_TOC, fd_toc, toc, /*fixed_size*/ true);
    bctrl();
    _last_calls_return_pc = pc();
    if (!success) { return NULL; }
  } else {
    // It's a friend function, load the entry point and don't care about
    // toc and env. Use an optimizable call instruction, but ensure the
    // same code-size as in the case of a non-friend function.
    nop();
    bl64_patchable(fd->entry(), rt);
    _last_calls_return_pc = pc();
  }
  return _last_calls_return_pc;
}
#endif // ABI_ELFv2

void MacroAssembler::call_VM_base(Register oop_result,
                                  Register last_java_sp,
                                  address  entry_point,
                                  bool     check_exceptions) {
  BLOCK_COMMENT("call_VM {");
  // Determine last_java_sp register.
  if (!last_java_sp->is_valid()) {
    last_java_sp = R1_SP;
  }
  set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1);

  // ARG1 must hold thread address.
  mr(R3_ARG1, R16_thread);
#if defined(ABI_ELFv2)
  address return_pc = call_c(entry_point, relocInfo::none);
#else
  address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none);
#endif

  reset_last_Java_frame();

  // Check for pending exceptions.
  if (check_exceptions) {
    // We don't check for exceptions here.
    ShouldNotReachHere();
  }

  // Get oop result if there is one and reset the value in the thread.
  if (oop_result->is_valid()) {
    get_vm_result(oop_result);
  }

  _last_calls_return_pc = return_pc;
  BLOCK_COMMENT("} call_VM");
}

void MacroAssembler::call_VM_leaf_base(address entry_point) {
  BLOCK_COMMENT("call_VM_leaf {");
#if defined(ABI_ELFv2)
  call_c(entry_point, relocInfo::none);
#else
  call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none);
#endif
  BLOCK_COMMENT("} call_VM_leaf");
}

void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
  call_VM_base(oop_result, noreg, entry_point, check_exceptions);
}

void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1,
                             bool check_exceptions) {
  // R3_ARG1 is reserved for the thread.
  mr_if_needed(R4_ARG2, arg_1);
  call_VM(oop_result, entry_point, check_exceptions);
}

void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
                             bool check_exceptions) {
  // R3_ARG1 is reserved for the thread
  mr_if_needed(R4_ARG2, arg_1);
  assert(arg_2 != R4_ARG2, "smashed argument");
  mr_if_needed(R5_ARG3, arg_2);
  call_VM(oop_result, entry_point, check_exceptions);
}

void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3,
                             bool check_exceptions) {
  // R3_ARG1 is reserved for the thread
  mr_if_needed(R4_ARG2, arg_1);
  assert(arg_2 != R4_ARG2, "smashed argument");
  mr_if_needed(R5_ARG3, arg_2);
  mr_if_needed(R6_ARG4, arg_3);
  call_VM(oop_result, entry_point, check_exceptions);
}

void MacroAssembler::call_VM_leaf(address entry_point) {
  call_VM_leaf_base(entry_point);
}

void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
  mr_if_needed(R3_ARG1, arg_1);
  call_VM_leaf(entry_point);
}

void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
  mr_if_needed(R3_ARG1, arg_1);
  assert(arg_2 != R3_ARG1, "smashed argument");
  mr_if_needed(R4_ARG2, arg_2);
  call_VM_leaf(entry_point);
}

void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  mr_if_needed(R3_ARG1, arg_1);
  assert(arg_2 != R3_ARG1, "smashed argument");
  mr_if_needed(R4_ARG2, arg_2);
  assert(arg_3 != R3_ARG1 && arg_3 != R4_ARG2, "smashed argument");
  mr_if_needed(R5_ARG3, arg_3);
  call_VM_leaf(entry_point);
}

// Check whether instruction is a read access to the polling page
// which was emitted by load_from_polling_page(..).
bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext,
                                               address* polling_address_ptr) {
  if (!is_ld(instruction))
    return false; // It's not a ld. Fail.

  int rt = inv_rt_field(instruction);
  int ra = inv_ra_field(instruction);
  int ds = inv_ds_field(instruction);
  if (!(ds == 0 && ra != 0 && rt == 0)) {
    return false; // It's not a ld(r0, X, ra). Fail.
  }

  if (!ucontext) {
    // Set polling address.
    if (polling_address_ptr != NULL) {
      *polling_address_ptr = NULL;
    }
    return true; // No ucontext given. Can't check value of ra. Assume true.
  }

#ifdef LINUX
  // Ucontext given. Check that register ra contains the address of
  // the safepoing polling page.
  ucontext_t* uc = (ucontext_t*) ucontext;
  // Set polling address.
  address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds;
  if (polling_address_ptr != NULL) {
    *polling_address_ptr = addr;
  }
  return os::is_poll_address(addr);
#else
  // Not on Linux, ucontext must be NULL.
  ShouldNotReachHere();
  return false;
#endif
}

void MacroAssembler::bang_stack_with_offset(int offset) {
  // When increasing the stack, the old stack pointer will be written
  // to the new top of stack according to the PPC64 abi.
  // Therefore, stack banging is not necessary when increasing
  // the stack by <= os::vm_page_size() bytes.
  // When increasing the stack by a larger amount, this method is
  // called repeatedly to bang the intermediate pages.

  // Stack grows down, caller passes positive offset.
  assert(offset > 0, "must bang with positive offset");

  long stdoffset = -offset;

  if (is_simm(stdoffset, 16)) {
    // Signed 16 bit offset, a simple std is ok.
    if (UseLoadInstructionsForStackBangingPPC64) {
      ld(R0, (int)(signed short)stdoffset, R1_SP);
    } else {
      std(R0,(int)(signed short)stdoffset, R1_SP);
    }
  } else if (is_simm(stdoffset, 31)) {
    const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
    const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);

    Register tmp = R11;
    addis(tmp, R1_SP, hi);
    if (UseLoadInstructionsForStackBangingPPC64) {
      ld(R0,  lo, tmp);
    } else {
      std(R0, lo, tmp);
    }
  } else {
    ShouldNotReachHere();
  }
}

// If instruction is a stack bang of the form
//    std    R0,    x(Ry),       (see bang_stack_with_offset())
//    stdu   R1_SP, x(R1_SP),    (see push_frame(), resize_frame())
// or stdux  R1_SP, Rx, R1_SP    (see push_frame(), resize_frame())
// return the banged address. Otherwise, return 0.
address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) {
#ifdef LINUX
  ucontext_t* uc = (ucontext_t*) ucontext;
  int rs = inv_rs_field(instruction);
  int ra = inv_ra_field(instruction);
  if (   (is_ld(instruction)   && rs == 0 &&  UseLoadInstructionsForStackBangingPPC64)
      || (is_std(instruction)  && rs == 0 && !UseLoadInstructionsForStackBangingPPC64)
      || (is_stdu(instruction) && rs == 1)) {
    int ds = inv_ds_field(instruction);
    // return banged address
    return ds+(address)uc->uc_mcontext.regs->gpr[ra];
  } else if (is_stdux(instruction) && rs == 1) {
    int rb = inv_rb_field(instruction);
    address sp = (address)uc->uc_mcontext.regs->gpr[1];
    long rb_val = (long)uc->uc_mcontext.regs->gpr[rb];
    return ra != 1 || rb_val >= 0 ? NULL         // not a stack bang
                                  : sp + rb_val; // banged address
  }
  return NULL; // not a stack bang
#else
  // workaround not needed on !LINUX :-)
  ShouldNotCallThis();
  return NULL;
#endif
}

void MacroAssembler::reserved_stack_check(Register return_pc) {
  // Test if reserved zone needs to be enabled.
  Label no_reserved_zone_enabling;

  ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
  cmpld(CCR0, R1_SP, R0);
  blt_predict_taken(CCR0, no_reserved_zone_enabling);

  // Enable reserved zone again, throw stack overflow exception.
  push_frame_reg_args(0, R0);
  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
  pop_frame();
  mtlr(return_pc);
  load_const_optimized(R0, StubRoutines::throw_delayed_StackOverflowError_entry());
  mtctr(R0);
  bctr();

  should_not_reach_here();

  bind(no_reserved_zone_enabling);
}

void MacroAssembler::getandsetd(Register dest_current_value, Register exchange_value, Register addr_base,
                                bool cmpxchgx_hint) {
  Label retry;
  bind(retry);
  ldarx(dest_current_value, addr_base, cmpxchgx_hint);
  stdcx_(exchange_value, addr_base);
  if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
    bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
  } else {
    bne(                  CCR0, retry); // StXcx_ sets CCR0.
  }
}

void MacroAssembler::getandaddd(Register dest_current_value, Register inc_value, Register addr_base,
                                Register tmp, bool cmpxchgx_hint) {
  Label retry;
  bind(retry);
  ldarx(dest_current_value, addr_base, cmpxchgx_hint);
  add(tmp, dest_current_value, inc_value);
  stdcx_(tmp, addr_base);
  if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
    bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
  } else {
    bne(                  CCR0, retry); // StXcx_ sets CCR0.
  }
}

// Word/sub-word atomic helper functions

// Temps and addr_base are killed if size < 4 and processor does not support respective instructions.
// Only signed types are supported with size < 4.
// Atomic add always kills tmp1.
void MacroAssembler::atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value,
                                                   Register addr_base, Register tmp1, Register tmp2, Register tmp3,
                                                   bool cmpxchgx_hint, bool is_add, int size) {
  // Sub-word instructions are available since Power 8.
  // For older processors, instruction_type != size holds, and we
  // emulate the sub-word instructions by constructing a 4-byte value
  // that leaves the other bytes unchanged.
  const int instruction_type = VM_Version::has_lqarx() ? size : 4;

  Label retry;
  Register shift_amount = noreg,
           val32 = dest_current_value,
           modval = is_add ? tmp1 : exchange_value;

  if (instruction_type != size) {
    assert_different_registers(tmp1, tmp2, tmp3, dest_current_value, exchange_value, addr_base);
    modval = tmp1;
    shift_amount = tmp2;
    val32 = tmp3;
    // Need some preperation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
#ifdef VM_LITTLE_ENDIAN
    rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
    clrrdi(addr_base, addr_base, 2);
#else
    xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
    clrrdi(addr_base, addr_base, 2);
    rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
#endif
  }

  // atomic emulation loop
  bind(retry);

  switch (instruction_type) {
    case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
    case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
    case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
    default: ShouldNotReachHere();
  }

  if (instruction_type != size) {
    srw(dest_current_value, val32, shift_amount);
  }

  if (is_add) { add(modval, dest_current_value, exchange_value); }

  if (instruction_type != size) {
    // Transform exchange value such that the replacement can be done by one xor instruction.
    xorr(modval, dest_current_value, is_add ? modval : exchange_value);
    clrldi(modval, modval, (size == 1) ? 56 : 48);
    slw(modval, modval, shift_amount);
    xorr(modval, val32, modval);
  }

  switch (instruction_type) {
    case 4: stwcx_(modval, addr_base); break;
    case 2: sthcx_(modval, addr_base); break;
    case 1: stbcx_(modval, addr_base); break;
    default: ShouldNotReachHere();
  }

  if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
    bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
  } else {
    bne(                  CCR0, retry); // StXcx_ sets CCR0.
  }

  // l?arx zero-extends, but Java wants byte/short values sign-extended.
  if (size == 1) {
    extsb(dest_current_value, dest_current_value);
  } else if (size == 2) {
    extsh(dest_current_value, dest_current_value);
  };
}

// Temps, addr_base and exchange_value are killed if size < 4 and processor does not support respective instructions.
// Only signed types are supported with size < 4.
void MacroAssembler::cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value,
                                       Register compare_value, Register exchange_value,
                                       Register addr_base, Register tmp1, Register tmp2,
                                       Label &retry, Label &failed, bool cmpxchgx_hint, int size) {
  // Sub-word instructions are available since Power 8.
  // For older processors, instruction_type != size holds, and we
  // emulate the sub-word instructions by constructing a 4-byte value
  // that leaves the other bytes unchanged.
  const int instruction_type = VM_Version::has_lqarx() ? size : 4;

  Register shift_amount = noreg,
           val32 = dest_current_value,
           modval = exchange_value;

  if (instruction_type != size) {
    assert_different_registers(tmp1, tmp2, dest_current_value, compare_value, exchange_value, addr_base);
    shift_amount = tmp1;
    val32 = tmp2;
    modval = tmp2;
    // Need some preperation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
#ifdef VM_LITTLE_ENDIAN
    rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
    clrrdi(addr_base, addr_base, 2);
#else
    xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
    clrrdi(addr_base, addr_base, 2);
    rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
#endif
    // Transform exchange value such that the replacement can be done by one xor instruction.
    xorr(exchange_value, compare_value, exchange_value);
    clrldi(exchange_value, exchange_value, (size == 1) ? 56 : 48);
    slw(exchange_value, exchange_value, shift_amount);
  }

  // atomic emulation loop
  bind(retry);

  switch (instruction_type) {
    case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
    case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
    case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
    default: ShouldNotReachHere();
  }

  if (instruction_type != size) {
    srw(dest_current_value, val32, shift_amount);
  }
  if (size == 1) {
    extsb(dest_current_value, dest_current_value);
  } else if (size == 2) {
    extsh(dest_current_value, dest_current_value);
  };

  cmpw(flag, dest_current_value, compare_value);
  if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
    bne_predict_not_taken(flag, failed);
  } else {
    bne(                  flag, failed);
  }
  // branch to done  => (flag == ne), (dest_current_value != compare_value)
  // fall through    => (flag == eq), (dest_current_value == compare_value)

  if (instruction_type != size) {
    xorr(modval, val32, exchange_value);
  }

  switch (instruction_type) {
    case 4: stwcx_(modval, addr_base); break;
    case 2: sthcx_(modval, addr_base); break;
    case 1: stbcx_(modval, addr_base); break;
    default: ShouldNotReachHere();
  }
}

// CmpxchgX sets condition register to cmpX(current, compare).
void MacroAssembler::cmpxchg_generic(ConditionRegister flag, Register dest_current_value,
                                     Register compare_value, Register exchange_value,
                                     Register addr_base, Register tmp1, Register tmp2,
                                     int semantics, bool cmpxchgx_hint,
                                     Register int_flag_success, bool contention_hint, bool weak, int size) {
  Label retry;
  Label failed;
  Label done;

  // Save one branch if result is returned via register and
  // result register is different from the other ones.
  bool use_result_reg    = (int_flag_success != noreg);
  bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value &&
                            int_flag_success != exchange_value && int_flag_success != addr_base &&
                            int_flag_success != tmp1 && int_flag_success != tmp2);
  assert(!weak || flag == CCR0, "weak only supported with CCR0");
  assert(size == 1 || size == 2 || size == 4, "unsupported");

  if (use_result_reg && preset_result_reg) {
    li(int_flag_success, 0); // preset (assume cas failed)
  }

  // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
  if (contention_hint) { // Don't try to reserve if cmp fails.
    switch (size) {
      case 1: lbz(dest_current_value, 0, addr_base); extsb(dest_current_value, dest_current_value); break;
      case 2: lha(dest_current_value, 0, addr_base); break;
      case 4: lwz(dest_current_value, 0, addr_base); break;
      default: ShouldNotReachHere();
    }
    cmpw(flag, dest_current_value, compare_value);
    bne(flag, failed);
  }

  // release/fence semantics
  if (semantics & MemBarRel) {
    release();
  }

  cmpxchg_loop_body(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
                    retry, failed, cmpxchgx_hint, size);
  if (!weak || use_result_reg) {
    if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
      bne_predict_not_taken(CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
    } else {
      bne(                  CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
    }
  }
  // fall through    => (flag == eq), (dest_current_value == compare_value), (swapped)

  // Result in register (must do this at the end because int_flag_success can be the
  // same register as one above).
  if (use_result_reg) {
    li(int_flag_success, 1);
  }

  if (semantics & MemBarFenceAfter) {
    fence();
  } else if (semantics & MemBarAcq) {
    isync();
  }

  if (use_result_reg && !preset_result_reg) {
    b(done);
  }

  bind(failed);
  if (use_result_reg && !preset_result_reg) {
    li(int_flag_success, 0);
  }

  bind(done);
  // (flag == ne) => (dest_current_value != compare_value), (!swapped)
  // (flag == eq) => (dest_current_value == compare_value), ( swapped)
}

// Preforms atomic compare exchange:
//   if (compare_value == *addr_base)
//     *addr_base = exchange_value
//     int_flag_success = 1;
//   else
//     int_flag_success = 0;
//
// ConditionRegister flag       = cmp(compare_value, *addr_base)
// Register dest_current_value  = *addr_base
// Register compare_value       Used to compare with value in memory
// Register exchange_value      Written to memory if compare_value == *addr_base
// Register addr_base           The memory location to compareXChange
// Register int_flag_success    Set to 1 if exchange_value was written to *addr_base
//
// To avoid the costly compare exchange the value is tested beforehand.
// Several special cases exist to avoid that unnecessary information is generated.
//
void MacroAssembler::cmpxchgd(ConditionRegister flag,
                              Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value,
                              Register addr_base, int semantics, bool cmpxchgx_hint,
                              Register int_flag_success, Label* failed_ext, bool contention_hint, bool weak) {
  Label retry;
  Label failed_int;
  Label& failed = (failed_ext != NULL) ? *failed_ext : failed_int;
  Label done;

  // Save one branch if result is returned via register and result register is different from the other ones.
  bool use_result_reg    = (int_flag_success!=noreg);
  bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value.register_or_noreg() &&
                            int_flag_success!=exchange_value && int_flag_success!=addr_base);
  assert(!weak || flag == CCR0, "weak only supported with CCR0");
  assert(int_flag_success == noreg || failed_ext == NULL, "cannot have both");

  if (use_result_reg && preset_result_reg) {
    li(int_flag_success, 0); // preset (assume cas failed)
  }

  // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
  if (contention_hint) { // Don't try to reserve if cmp fails.
    ld(dest_current_value, 0, addr_base);
    cmpd(flag, compare_value, dest_current_value);
    bne(flag, failed);
  }

  // release/fence semantics
  if (semantics & MemBarRel) {
    release();
  }

  // atomic emulation loop
  bind(retry);

  ldarx(dest_current_value, addr_base, cmpxchgx_hint);
  cmpd(flag, compare_value, dest_current_value);
  if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
    bne_predict_not_taken(flag, failed);
  } else {
    bne(                  flag, failed);
  }

  stdcx_(exchange_value, addr_base);
  if (!weak || use_result_reg || failed_ext) {
    if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
      bne_predict_not_taken(CCR0, weak ? failed : retry); // stXcx_ sets CCR0
    } else {
      bne(                  CCR0, weak ? failed : retry); // stXcx_ sets CCR0
    }
  }

  // result in register (must do this at the end because int_flag_success can be the same register as one above)
  if (use_result_reg) {
    li(int_flag_success, 1);
  }

  if (semantics & MemBarFenceAfter) {
    fence();
  } else if (semantics & MemBarAcq) {
    isync();
  }

  if (use_result_reg && !preset_result_reg) {
    b(done);
  }

  bind(failed_int);
  if (use_result_reg && !preset_result_reg) {
    li(int_flag_success, 0);
  }

  bind(done);
  // (flag == ne) => (dest_current_value != compare_value), (!swapped)
  // (flag == eq) => (dest_current_value == compare_value), ( swapped)
}

// Look up the method for a megamorphic invokeinterface call.
// The target method is determined by <intf_klass, itable_index>.
// The receiver klass is in recv_klass.
// On success, the result will be in method_result, and execution falls through.
// On failure, execution transfers to the given label.
void MacroAssembler::lookup_interface_method(Register recv_klass,
                                             Register intf_klass,
                                             RegisterOrConstant itable_index,
                                             Register method_result,
                                             Register scan_temp,
                                             Register temp2,
                                             Label& L_no_such_interface,
                                             bool return_method) {
  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);

  // Compute start of first itableOffsetEntry (which is at the end of the vtable).
  int vtable_base = in_bytes(Klass::vtable_start_offset());
  int itentry_off = itableMethodEntry::method_offset_in_bytes();
  int logMEsize   = exact_log2(itableMethodEntry::size() * wordSize);
  int scan_step   = itableOffsetEntry::size() * wordSize;
  int log_vte_size= exact_log2(vtableEntry::size_in_bytes());

  lwz(scan_temp, in_bytes(Klass::vtable_length_offset()), recv_klass);
  // %%% We should store the aligned, prescaled offset in the klassoop.
  // Then the next several instructions would fold away.

  sldi(scan_temp, scan_temp, log_vte_size);
  addi(scan_temp, scan_temp, vtable_base);
  add(scan_temp, recv_klass, scan_temp);

  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  if (return_method) {
    if (itable_index.is_register()) {
      Register itable_offset = itable_index.as_register();
      sldi(method_result, itable_offset, logMEsize);
      if (itentry_off) { addi(method_result, method_result, itentry_off); }
      add(method_result, method_result, recv_klass);
    } else {
      long itable_offset = (long)itable_index.as_constant();
      // static address, no relocation
      add_const_optimized(method_result, recv_klass, (itable_offset << logMEsize) + itentry_off, temp2);
    }
  }

  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  //   if (scan->interface() == intf) {
  //     result = (klass + scan->offset() + itable_index);
  //   }
  // }
  Label search, found_method;

  for (int peel = 1; peel >= 0; peel--) {
    // %%%% Could load both offset and interface in one ldx, if they were
    // in the opposite order. This would save a load.
    ld(temp2, itableOffsetEntry::interface_offset_in_bytes(), scan_temp);

    // Check that this entry is non-null. A null entry means that
    // the receiver class doesn't implement the interface, and wasn't the
    // same as when the caller was compiled.
    cmpd(CCR0, temp2, intf_klass);

    if (peel) {
      beq(CCR0, found_method);
    } else {
      bne(CCR0, search);
      // (invert the test to fall through to found_method...)
    }

    if (!peel) break;

    bind(search);

    cmpdi(CCR0, temp2, 0);
    beq(CCR0, L_no_such_interface);
    addi(scan_temp, scan_temp, scan_step);
  }

  bind(found_method);

  // Got a hit.
  if (return_method) {
    int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
    lwz(scan_temp, ito_offset, scan_temp);
    ldx(method_result, scan_temp, method_result);
  }
}

// virtual method calling
void MacroAssembler::lookup_virtual_method(Register recv_klass,
                                           RegisterOrConstant vtable_index,
                                           Register method_result) {

  assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());

  const int base = in_bytes(Klass::vtable_start_offset());
  assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");

  if (vtable_index.is_register()) {
    sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord);
    add(recv_klass, vtable_index.as_register(), recv_klass);
  } else {
    addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord);
  }
  ld(R19_method, base + vtableEntry::method_offset_in_bytes(), recv_klass);
}

/////////////////////////////////////////// subtype checking ////////////////////////////////////////////
void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
                                                   Register super_klass,
                                                   Register temp1_reg,
                                                   Register temp2_reg,
                                                   Label* L_success,
                                                   Label* L_failure,
                                                   Label* L_slow_path,
                                                   RegisterOrConstant super_check_offset) {

  const Register check_cache_offset = temp1_reg;
  const Register cached_super       = temp2_reg;

  assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super);

  int sco_offset = in_bytes(Klass::super_check_offset_offset());
  int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());

  bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  bool need_slow_path = (must_load_sco || super_check_offset.constant_or_zero() == sco_offset);

  Label L_fallthrough;
  int label_nulls = 0;
  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  assert(label_nulls <= 1 ||
         (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
         "at most one NULL in the batch, usually");

  // If the pointers are equal, we are done (e.g., String[] elements).
  // This self-check enables sharing of secondary supertype arrays among
  // non-primary types such as array-of-interface. Otherwise, each such
  // type would need its own customized SSA.
  // We move this check to the front of the fast path because many
  // type checks are in fact trivially successful in this manner,
  // so we get a nicely predicted branch right at the start of the check.
  cmpd(CCR0, sub_klass, super_klass);
  beq(CCR0, *L_success);

  // Check the supertype display:
  if (must_load_sco) {
    // The super check offset is always positive...
    lwz(check_cache_offset, sco_offset, super_klass);
    super_check_offset = RegisterOrConstant(check_cache_offset);
    // super_check_offset is register.
    assert_different_registers(sub_klass, super_klass, cached_super, super_check_offset.as_register());
  }
  // The loaded value is the offset from KlassOopDesc.

  ld(cached_super, super_check_offset, sub_klass);
  cmpd(CCR0, cached_super, super_klass);

  // This check has worked decisively for primary supers.
  // Secondary supers are sought in the super_cache ('super_cache_addr').
  // (Secondary supers are interfaces and very deeply nested subtypes.)
  // This works in the same check above because of a tricky aliasing
  // between the super_cache and the primary super display elements.
  // (The 'super_check_addr' can address either, as the case requires.)
  // Note that the cache is updated below if it does not help us find
  // what we need immediately.
  // So if it was a primary super, we can just fail immediately.
  // Otherwise, it's the slow path for us (no success at this point).

#define FINAL_JUMP(label) if (&(label) != &L_fallthrough) { b(label); }

  if (super_check_offset.is_register()) {
    beq(CCR0, *L_success);
    cmpwi(CCR0, super_check_offset.as_register(), sc_offset);
    if (L_failure == &L_fallthrough) {
      beq(CCR0, *L_slow_path);
    } else {
      bne(CCR0, *L_failure);
      FINAL_JUMP(*L_slow_path);
    }
  } else {
    if (super_check_offset.as_constant() == sc_offset) {
      // Need a slow path; fast failure is impossible.
      if (L_slow_path == &L_fallthrough) {
        beq(CCR0, *L_success);
      } else {
        bne(CCR0, *L_slow_path);
        FINAL_JUMP(*L_success);
      }
    } else {
      // No slow path; it's a fast decision.
      if (L_failure == &L_fallthrough) {
        beq(CCR0, *L_success);
      } else {
        bne(CCR0, *L_failure);
        FINAL_JUMP(*L_success);
      }
    }
  }

  bind(L_fallthrough);
#undef FINAL_JUMP
}

void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
                                                   Register super_klass,
                                                   Register temp1_reg,
                                                   Register temp2_reg,
                                                   Label* L_success,
                                                   Register result_reg) {
  const Register array_ptr = temp1_reg; // current value from cache array
  const Register temp      = temp2_reg;

  assert_different_registers(sub_klass, super_klass, array_ptr, temp);

  int source_offset = in_bytes(Klass::secondary_supers_offset());
  int target_offset = in_bytes(Klass::secondary_super_cache_offset());

  int length_offset = Array<Klass*>::length_offset_in_bytes();
  int base_offset   = Array<Klass*>::base_offset_in_bytes();

  Label hit, loop, failure, fallthru;

  ld(array_ptr, source_offset, sub_klass);

  // TODO: PPC port: assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated.");
  lwz(temp, length_offset, array_ptr);
  cmpwi(CCR0, temp, 0);
  beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0

  mtctr(temp); // load ctr

  bind(loop);
  // Oops in table are NO MORE compressed.
  ld(temp, base_offset, array_ptr);
  cmpd(CCR0, temp, super_klass);
  beq(CCR0, hit);
  addi(array_ptr, array_ptr, BytesPerWord);
  bdnz(loop);

  bind(failure);
  if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss)
  b(fallthru);

  bind(hit);
  std(super_klass, target_offset, sub_klass); // save result to cache
  if (result_reg != noreg) { li(result_reg, 0); } // load zero result (indicates a hit)
  if (L_success != NULL) { b(*L_success); }
  else if (result_reg == noreg) { blr(); } // return with CR0.eq if neither label nor result reg provided

  bind(fallthru);
}

// Try fast path, then go to slow one if not successful
void MacroAssembler::check_klass_subtype(Register sub_klass,
                         Register super_klass,
                         Register temp1_reg,
                         Register temp2_reg,
                         Label& L_success) {
  Label L_failure;
  check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success, &L_failure);
  check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success);
  bind(L_failure); // Fallthru if not successful.
}

void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
  assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required");

  Label L_fallthrough;
  if (L_fast_path == NULL) {
    L_fast_path = &L_fallthrough;
  } else if (L_slow_path == NULL) {
    L_slow_path = &L_fallthrough;
  }

  // Fast path check: class is fully initialized
  lbz(R0, in_bytes(InstanceKlass::init_state_offset()), klass);
  cmpwi(CCR0, R0, InstanceKlass::fully_initialized);
  beq(CCR0, *L_fast_path);

  // Fast path check: current thread is initializer thread
  ld(R0, in_bytes(InstanceKlass::init_thread_offset()), klass);
  cmpd(CCR0, thread, R0);
  if (L_slow_path == &L_fallthrough) {
    beq(CCR0, *L_fast_path);
  } else if (L_fast_path == &L_fallthrough) {
    bne(CCR0, *L_slow_path);
  } else {
    Unimplemented();
  }

  bind(L_fallthrough);
}

RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
                                                   Register temp_reg,
                                                   int extra_slot_offset) {
  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  int stackElementSize = Interpreter::stackElementSize;
  int offset = extra_slot_offset * stackElementSize;
  if (arg_slot.is_constant()) {
    offset += arg_slot.as_constant() * stackElementSize;
    return offset;
  } else {
    assert(temp_reg != noreg, "must specify");
    sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize));
    if (offset != 0)
      addi(temp_reg, temp_reg, offset);
    return temp_reg;
  }
}

// Supports temp2_reg = R0.
void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj_reg,
                                          Register mark_reg, Register temp_reg,
                                          Register temp2_reg, Label& done, Label* slow_case) {
  assert(UseBiasedLocking, "why call this otherwise?");

#ifdef ASSERT
  assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
#endif

  Label cas_label;

  // Branch to done if fast path fails and no slow_case provided.
  Label *slow_case_int = (slow_case != NULL) ? slow_case : &done;

  // Biased locking
  // See whether the lock is currently biased toward our thread and
  // whether the epoch is still valid
  // Note that the runtime guarantees sufficient alignment of JavaThread
  // pointers to allow age to be placed into low bits
  assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits,
         "biased locking makes assumptions about bit layout");

  if (PrintBiasedLockingStatistics) {
    load_const(temp2_reg, (address) BiasedLocking::total_entry_count_addr(), temp_reg);
    lwzx(temp_reg, temp2_reg);
    addi(temp_reg, temp_reg, 1);
    stwx(temp_reg, temp2_reg);
  }

  andi(temp_reg, mark_reg, markWord::biased_lock_mask_in_place);
  cmpwi(cr_reg, temp_reg, markWord::biased_lock_pattern);
  bne(cr_reg, cas_label);

  load_klass(temp_reg, obj_reg);

  load_const_optimized(temp2_reg, ~((int) markWord::age_mask_in_place));
  ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
  orr(temp_reg, R16_thread, temp_reg);
  xorr(temp_reg, mark_reg, temp_reg);
  andr(temp_reg, temp_reg, temp2_reg);
  cmpdi(cr_reg, temp_reg, 0);
  if (PrintBiasedLockingStatistics) {
    Label l;
    bne(cr_reg, l);
    load_const(temp2_reg, (address) BiasedLocking::biased_lock_entry_count_addr());
    lwzx(mark_reg, temp2_reg);
    addi(mark_reg, mark_reg, 1);
    stwx(mark_reg, temp2_reg);
    // restore mark_reg
    ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
    bind(l);
  }
  beq(cr_reg, done);

  Label try_revoke_bias;
  Label try_rebias;

  // At this point we know that the header has the bias pattern and
  // that we are not the bias owner in the current epoch. We need to
  // figure out more details about the state of the header in order to
  // know what operations can be legally performed on the object's
  // header.

  // If the low three bits in the xor result aren't clear, that means
  // the prototype header is no longer biased and we have to revoke
  // the bias on this object.
  andi(temp2_reg, temp_reg, markWord::biased_lock_mask_in_place);
  cmpwi(cr_reg, temp2_reg, 0);
  bne(cr_reg, try_revoke_bias);

  // Biasing is still enabled for this data type. See whether the
  // epoch of the current bias is still valid, meaning that the epoch
  // bits of the mark word are equal to the epoch bits of the
  // prototype header. (Note that the prototype header's epoch bits
  // only change at a safepoint.) If not, attempt to rebias the object
  // toward the current thread. Note that we must be absolutely sure
  // that the current epoch is invalid in order to do this because
  // otherwise the manipulations it performs on the mark word are
  // illegal.

  int shift_amount = 64 - markWord::epoch_shift;
  // rotate epoch bits to right (little) end and set other bits to 0
  // [ big part | epoch | little part ] -> [ 0..0 | epoch ]
  rldicl_(temp2_reg, temp_reg, shift_amount, 64 - markWord::epoch_bits);
  // branch if epoch bits are != 0, i.e. they differ, because the epoch has been incremented
  bne(CCR0, try_rebias);

  // The epoch of the current bias is still valid but we know nothing
  // about the owner; it might be set or it might be clear. Try to
  // acquire the bias of the object using an atomic operation. If this
  // fails we will go in to the runtime to revoke the object's bias.
  // Note that we first construct the presumed unbiased header so we
  // don't accidentally blow away another thread's valid bias.
  andi(mark_reg, mark_reg, (markWord::biased_lock_mask_in_place |
                                markWord::age_mask_in_place |
                                markWord::epoch_mask_in_place));
  orr(temp_reg, R16_thread, mark_reg);

  assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");

  // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
  cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
           /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
           /*where=*/obj_reg,
           MacroAssembler::MemBarAcq,
           MacroAssembler::cmpxchgx_hint_acquire_lock(),
           noreg, slow_case_int); // bail out if failed

  // If the biasing toward our thread failed, this means that
  // another thread succeeded in biasing it toward itself and we
  // need to revoke that bias. The revocation will occur in the
  // interpreter runtime in the slow case.
  if (PrintBiasedLockingStatistics) {
    load_const(temp2_reg, (address) BiasedLocking::anonymously_biased_lock_entry_count_addr(), temp_reg);
    lwzx(temp_reg, temp2_reg);
    addi(temp_reg, temp_reg, 1);
    stwx(temp_reg, temp2_reg);
  }
  b(done);

  bind(try_rebias);
  // At this point we know the epoch has expired, meaning that the
  // current "bias owner", if any, is actually invalid. Under these
  // circumstances _only_, we are allowed to use the current header's
  // value as the comparison value when doing the cas to acquire the
  // bias in the current epoch. In other words, we allow transfer of
  // the bias from one thread to another directly in this situation.
  load_klass(temp_reg, obj_reg);
  andi(temp2_reg, mark_reg, markWord::age_mask_in_place);
  orr(temp2_reg, R16_thread, temp2_reg);
  ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
  orr(temp_reg, temp2_reg, temp_reg);

  assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");

  cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
                 /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
                 /*where=*/obj_reg,
                 MacroAssembler::MemBarAcq,
                 MacroAssembler::cmpxchgx_hint_acquire_lock(),
                 noreg, slow_case_int); // bail out if failed

  // If the biasing toward our thread failed, this means that
  // another thread succeeded in biasing it toward itself and we
  // need to revoke that bias. The revocation will occur in the
  // interpreter runtime in the slow case.
  if (PrintBiasedLockingStatistics) {
    load_const(temp2_reg, (address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg);
    lwzx(temp_reg, temp2_reg);
    addi(temp_reg, temp_reg, 1);
    stwx(temp_reg, temp2_reg);
  }
  b(done);

  bind(try_revoke_bias);
  // The prototype mark in the klass doesn't have the bias bit set any
  // more, indicating that objects of this data type are not supposed
  // to be biased any more. We are going to try to reset the mark of
  // this object to the prototype value and fall through to the
  // CAS-based locking scheme. Note that if our CAS fails, it means
  // that another thread raced us for the privilege of revoking the
  // bias of this particular object, so it's okay to continue in the
  // normal locking code.
  load_klass(temp_reg, obj_reg);
  ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
  andi(temp2_reg, mark_reg, markWord::age_mask_in_place);
  orr(temp_reg, temp_reg, temp2_reg);

  assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");

  // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
  cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
                 /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
                 /*where=*/obj_reg,
                 MacroAssembler::MemBarAcq,
                 MacroAssembler::cmpxchgx_hint_acquire_lock());

  // reload markWord in mark_reg before continuing with lightweight locking
  ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);

  // Fall through to the normal CAS-based lock, because no matter what
  // the result of the above CAS, some thread must have succeeded in
  // removing the bias bit from the object's header.
  if (PrintBiasedLockingStatistics) {
    Label l;
    bne(cr_reg, l);
    load_const(temp2_reg, (address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg);
    lwzx(temp_reg, temp2_reg);
    addi(temp_reg, temp_reg, 1);
    stwx(temp_reg, temp2_reg);
    bind(l);
  }

  bind(cas_label);
}

void MacroAssembler::biased_locking_exit (ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done) {
  // Check for biased locking unlock case, which is a no-op
  // Note: we do not have to check the thread ID for two reasons.
  // First, the interpreter checks for IllegalMonitorStateException at
  // a higher level. Second, if the bias was revoked while we held the
  // lock, the object could not be rebiased toward another thread, so
  // the bias bit would be clear.

  ld(temp_reg, 0, mark_addr);
  andi(temp_reg, temp_reg, markWord::biased_lock_mask_in_place);

  cmpwi(cr_reg, temp_reg, markWord::biased_lock_pattern);
  beq(cr_reg, done);
}

// allocation (for C1)
void MacroAssembler::eden_allocate(
  Register obj,                      // result: pointer to object after successful allocation
  Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  int      con_size_in_bytes,        // object size in bytes if   known at compile time
  Register t1,                       // temp register
  Register t2,                       // temp register
  Label&   slow_case                 // continuation point if fast allocation fails
) {
  b(slow_case);
}

void MacroAssembler::tlab_allocate(
  Register obj,                      // result: pointer to object after successful allocation
  Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  int      con_size_in_bytes,        // object size in bytes if   known at compile time
  Register t1,                       // temp register
  Label&   slow_case                 // continuation point if fast allocation fails
) {
  // make sure arguments make sense
  assert_different_registers(obj, var_size_in_bytes, t1);
  assert(0 <= con_size_in_bytes && is_simm16(con_size_in_bytes), "illegal object size");
  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");

  const Register new_top = t1;
  //verify_tlab(); not implemented

  ld(obj, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
  ld(R0, in_bytes(JavaThread::tlab_end_offset()), R16_thread);
  if (var_size_in_bytes == noreg) {
    addi(new_top, obj, con_size_in_bytes);
  } else {
    add(new_top, obj, var_size_in_bytes);
  }
  cmpld(CCR0, new_top, R0);
  bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case);

#ifdef ASSERT
  // make sure new free pointer is properly aligned
  {
    Label L;
    andi_(R0, new_top, MinObjAlignmentInBytesMask);
    beq(CCR0, L);
    stop("updated TLAB free is not properly aligned", 0x934);
    bind(L);
  }
#endif // ASSERT

  // update the tlab top pointer
  std(new_top, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
  //verify_tlab(); not implemented
}
void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2) {
  unimplemented("incr_allocated_bytes");
}

address MacroAssembler::emit_trampoline_stub(int destination_toc_offset,
                                             int insts_call_instruction_offset, Register Rtoc) {
  // Start the stub.
  address stub = start_a_stub(64);
  if (stub == NULL) { return NULL; } // CodeCache full: bail out

  // Create a trampoline stub relocation which relates this trampoline stub
  // with the call instruction at insts_call_instruction_offset in the
  // instructions code-section.
  relocate(trampoline_stub_Relocation::spec(code()->insts()->start() + insts_call_instruction_offset));
  const int stub_start_offset = offset();

  // For java_to_interp stubs we use R11_scratch1 as scratch register
  // and in call trampoline stubs we use R12_scratch2. This way we
  // can distinguish them (see is_NativeCallTrampolineStub_at()).
  Register reg_scratch = R12_scratch2;

  // Now, create the trampoline stub's code:
  // - load the TOC
  // - load the call target from the constant pool
  // - call
  if (Rtoc == noreg) {
    calculate_address_from_global_toc(reg_scratch, method_toc());
    Rtoc = reg_scratch;
  }

  ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, Rtoc, false);
  mtctr(reg_scratch);
  bctr();

  const address stub_start_addr = addr_at(stub_start_offset);

  // Assert that the encoded destination_toc_offset can be identified and that it is correct.
  assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
         "encoded offset into the constant pool must match");
  // Trampoline_stub_size should be good.
  assert((uint)(offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
  assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");

  // End the stub.
  end_a_stub();
  return stub;
}

// TM on PPC64.
void MacroAssembler::atomic_inc_ptr(Register addr, Register result, int simm16) {
  Label retry;
  bind(retry);
  ldarx(result, addr, /*hint*/ false);
  addi(result, result, simm16);
  stdcx_(result, addr);
  if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
    bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
  } else {
    bne(                  CCR0, retry); // stXcx_ sets CCR0
  }
}

void MacroAssembler::atomic_ori_int(Register addr, Register result, int uimm16) {
  Label retry;
  bind(retry);
  lwarx(result, addr, /*hint*/ false);
  ori(result, result, uimm16);
  stwcx_(result, addr);
  if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
    bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
  } else {
    bne(                  CCR0, retry); // stXcx_ sets CCR0
  }
}

#if INCLUDE_RTM_OPT

// Update rtm_counters based on abort status
// input: abort_status
//        rtm_counters_Reg (RTMLockingCounters*)
void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters_Reg) {
  // Mapping to keep PreciseRTMLockingStatistics similar to x86.
  // x86 ppc (! means inverted, ? means not the same)
  //  0   31  Set if abort caused by XABORT instruction.
  //  1  ! 7  If set, the transaction may succeed on a retry. This bit is always clear if bit 0 is set.
  //  2   13  Set if another logical processor conflicted with a memory address that was part of the transaction that aborted.
  //  3   10  Set if an internal buffer overflowed.
  //  4  ?12  Set if a debug breakpoint was hit.
  //  5  ?32  Set if an abort occurred during execution of a nested transaction.
  const int failure_bit[] = {tm_tabort, // Signal handler will set this too.
                             tm_failure_persistent,
                             tm_non_trans_cf,
                             tm_trans_cf,
                             tm_footprint_of,
                             tm_failure_code,
                             tm_transaction_level};

  const int num_failure_bits = sizeof(failure_bit) / sizeof(int);
  const int num_counters = RTMLockingCounters::ABORT_STATUS_LIMIT;

  const int bit2counter_map[][num_counters] =
  // 0 = no map; 1 = mapped, no inverted logic; -1 = mapped, inverted logic
  // Inverted logic means that if a bit is set don't count it, or vice-versa.
  // Care must be taken when mapping bits to counters as bits for a given
  // counter must be mutually exclusive. Otherwise, the counter will be
  // incremented more than once.
  // counters:
  // 0        1        2         3         4         5
  // abort  , persist, conflict, overflow, debug   , nested         bits:
  {{ 1      , 0      , 0       , 0       , 0       , 0      },   // abort
   { 0      , -1     , 0       , 0       , 0       , 0      },   // failure_persistent
   { 0      , 0      , 1       , 0       , 0       , 0      },   // non_trans_cf
   { 0      , 0      , 1       , 0       , 0       , 0      },   // trans_cf
   { 0      , 0      , 0       , 1       , 0       , 0      },   // footprint_of
   { 0      , 0      , 0       , 0       , -1      , 0      },   // failure_code = 0xD4
   { 0      , 0      , 0       , 0       , 0       , 1      }};  // transaction_level > 1
  // ...

  // Move abort_status value to R0 and use abort_status register as a
  // temporary register because R0 as third operand in ld/std is treated
  // as base address zero (value). Likewise, R0 as second operand in addi
  // is problematic because it amounts to li.
  const Register temp_Reg = abort_status;
  const Register abort_status_R0 = R0;
  mr(abort_status_R0, abort_status);

  // Increment total abort counter.
  int counters_offs = RTMLockingCounters::abort_count_offset();
  ld(temp_Reg, counters_offs, rtm_counters_Reg);
  addi(temp_Reg, temp_Reg, 1);
  std(temp_Reg, counters_offs, rtm_counters_Reg);

  // Increment specific abort counters.
  if (PrintPreciseRTMLockingStatistics) {

    // #0 counter offset.
    int abortX_offs = RTMLockingCounters::abortX_count_offset();

    for (int nbit = 0; nbit < num_failure_bits; nbit++) {
      for (int ncounter = 0; ncounter < num_counters; ncounter++) {
        if (bit2counter_map[nbit][ncounter] != 0) {
          Label check_abort;
          int abort_counter_offs = abortX_offs + (ncounter << 3);

          if (failure_bit[nbit] == tm_transaction_level) {
            // Don't check outer transaction, TL = 1 (bit 63). Hence only
            // 11 bits in the TL field are checked to find out if failure
            // occured in a nested transaction. This check also matches
            // the case when nesting_of = 1 (nesting overflow).
            rldicr_(temp_Reg, abort_status_R0, failure_bit[nbit], 10);
          } else if (failure_bit[nbit] == tm_failure_code) {
            // Check failure code for trap or illegal caught in TM.
            // Bits 0:7 are tested as bit 7 (persistent) is copied from
            // tabort or treclaim source operand.
            // On Linux: trap or illegal is TM_CAUSE_SIGNAL (0xD4).
            rldicl(temp_Reg, abort_status_R0, 8, 56);
            cmpdi(CCR0, temp_Reg, 0xD4);
          } else {
            rldicr_(temp_Reg, abort_status_R0, failure_bit[nbit], 0);
          }

          if (bit2counter_map[nbit][ncounter] == 1) {
            beq(CCR0, check_abort);
          } else {
            bne(CCR0, check_abort);
          }

          // We don't increment atomically.
          ld(temp_Reg, abort_counter_offs, rtm_counters_Reg);
          addi(temp_Reg, temp_Reg, 1);
          std(temp_Reg, abort_counter_offs, rtm_counters_Reg);

          bind(check_abort);
        }
      }
    }
  }
  // Restore abort_status.
  mr(abort_status, abort_status_R0);
}

// Branch if (random & (count-1) != 0), count is 2^n
// tmp and CR0 are killed
void MacroAssembler::branch_on_random_using_tb(Register tmp, int count, Label& brLabel) {
  mftb(tmp);
  andi_(tmp, tmp, count-1);
  bne(CCR0, brLabel);
}

// Perform abort ratio calculation, set no_rtm bit if high ratio.
// input:  rtm_counters_Reg (RTMLockingCounters* address) - KILLED
void MacroAssembler::rtm_abort_ratio_calculation(Register rtm_counters_Reg,
                                                 RTMLockingCounters* rtm_counters,
                                                 Metadata* method_data) {
  Label L_done, L_check_always_rtm1, L_check_always_rtm2;

  if (RTMLockingCalculationDelay > 0) {
    // Delay calculation.
    ld(rtm_counters_Reg, (RegisterOrConstant)(intptr_t)RTMLockingCounters::rtm_calculation_flag_addr());
    cmpdi(CCR0, rtm_counters_Reg, 0);
    beq(CCR0, L_done);
    load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
  }
  // Abort ratio calculation only if abort_count > RTMAbortThreshold.
  //   Aborted transactions = abort_count * 100
  //   All transactions = total_count *  RTMTotalCountIncrRate
  //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
  ld(R0, RTMLockingCounters::abort_count_offset(), rtm_counters_Reg);
  if (is_simm(RTMAbortThreshold, 16)) {   // cmpdi can handle 16bit immediate only.
    cmpdi(CCR0, R0, RTMAbortThreshold);
    blt(CCR0, L_check_always_rtm2);  // reload of rtm_counters_Reg not necessary
  } else {
    load_const_optimized(rtm_counters_Reg, RTMAbortThreshold);
    cmpd(CCR0, R0, rtm_counters_Reg);
    blt(CCR0, L_check_always_rtm1);  // reload of rtm_counters_Reg required
  }
  mulli(R0, R0, 100);

  const Register tmpReg = rtm_counters_Reg;
  ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
  mulli(tmpReg, tmpReg, RTMTotalCountIncrRate); // allowable range: int16
  mulli(tmpReg, tmpReg, RTMAbortRatio);         // allowable range: int16
  cmpd(CCR0, R0, tmpReg);
  blt(CCR0, L_check_always_rtm1); // jump to reload
  if (method_data != NULL) {
    // Set rtm_state to "no rtm" in MDO.
    // Not using a metadata relocation. Method and Class Loader are kept alive anyway.
    // (See nmethod::metadata_do and CodeBuffer::finalize_oop_references.)
    load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
    atomic_ori_int(R0, tmpReg, NoRTM);
  }
  b(L_done);

  bind(L_check_always_rtm1);
  load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
  bind(L_check_always_rtm2);
  ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
  int64_t thresholdValue = RTMLockingThreshold / RTMTotalCountIncrRate;
  if (is_simm(thresholdValue, 16)) {   // cmpdi can handle 16bit immediate only.
    cmpdi(CCR0, tmpReg, thresholdValue);
  } else {
    load_const_optimized(R0, thresholdValue);
    cmpd(CCR0, tmpReg, R0);
  }
  blt(CCR0, L_done);
  if (method_data != NULL) {
    // Set rtm_state to "always rtm" in MDO.
    // Not using a metadata relocation. See above.
    load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
    atomic_ori_int(R0, tmpReg, UseRTM);
  }
  bind(L_done);
}

// Update counters and perform abort ratio calculation.
// input: abort_status_Reg
void MacroAssembler::rtm_profiling(Register abort_status_Reg, Register temp_Reg,
                                   RTMLockingCounters* rtm_counters,
                                   Metadata* method_data,
                                   bool profile_rtm) {

  assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
  // Update rtm counters based on state at abort.
  // Reads abort_status_Reg, updates flags.
  assert_different_registers(abort_status_Reg, temp_Reg);
  load_const_optimized(temp_Reg, (address)rtm_counters, R0);
  rtm_counters_update(abort_status_Reg, temp_Reg);
  if (profile_rtm) {
    assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
    rtm_abort_ratio_calculation(temp_Reg, rtm_counters, method_data);
  }
}

// Retry on abort if abort's status indicates non-persistent failure.
// inputs: retry_count_Reg
//       : abort_status_Reg
// output: retry_count_Reg decremented by 1
void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg,
                                             Label& retryLabel, Label* checkRetry) {
  Label doneRetry;

  // Don't retry if failure is persistent.
  // The persistent bit is set when a (A) Disallowed operation is performed in
  // transactional state, like for instance trying to write the TFHAR after a
  // transaction is started; or when there is (B) a Nesting Overflow (too many
  // nested transactions); or when (C) the Footprint overflows (too many
  // addressess touched in TM state so there is no more space in the footprint
  // area to track them); or in case of (D) a Self-Induced Conflict, i.e. a
  // store is performed to a given address in TM state, then once in suspended
  // state the same address is accessed. Failure (A) is very unlikely to occur
  // in the JVM. Failure (D) will never occur because Suspended state is never
  // used in the JVM. Thus mostly (B) a Nesting Overflow or (C) a Footprint
  // Overflow will set the persistent bit.
  rldicr_(R0, abort_status_Reg, tm_failure_persistent, 0);
  bne(CCR0, doneRetry);

  // Don't retry if transaction was deliberately aborted, i.e. caused by a
  // tabort instruction.
  rldicr_(R0, abort_status_Reg, tm_tabort, 0);
  bne(CCR0, doneRetry);

  // Retry if transaction aborted due to a conflict with another thread.
  if (checkRetry) { bind(*checkRetry); }
  addic_(retry_count_Reg, retry_count_Reg, -1);
  blt(CCR0, doneRetry);
  b(retryLabel);
  bind(doneRetry);
}

// Spin and retry if lock is busy.
// inputs: owner_addr_Reg (monitor address)
//       : retry_count_Reg
// output: retry_count_Reg decremented by 1
// CTR is killed
void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register owner_addr_Reg, Label& retryLabel) {
  Label SpinLoop, doneRetry, doRetry;
  addic_(retry_count_Reg, retry_count_Reg, -1);
  blt(CCR0, doneRetry);

  if (RTMSpinLoopCount > 1) {
    li(R0, RTMSpinLoopCount);
    mtctr(R0);
  }

  // low thread priority
  smt_prio_low();
  bind(SpinLoop);

  if (RTMSpinLoopCount > 1) {
    bdz(doRetry);
    ld(R0, 0, owner_addr_Reg);
    cmpdi(CCR0, R0, 0);
    bne(CCR0, SpinLoop);
  }

  bind(doRetry);

  // restore thread priority to default in userspace
#ifdef LINUX
  smt_prio_medium_low();
#else
  smt_prio_medium();
#endif

  b(retryLabel);

  bind(doneRetry);
}

// Use RTM for normal stack locks.
// Input: objReg (object to lock)
void MacroAssembler::rtm_stack_locking(ConditionRegister flag,
                                       Register obj, Register mark_word, Register tmp,
                                       Register retry_on_abort_count_Reg,
                                       RTMLockingCounters* stack_rtm_counters,
                                       Metadata* method_data, bool profile_rtm,
                                       Label& DONE_LABEL, Label& IsInflated) {
  assert(UseRTMForStackLocks, "why call this otherwise?");
  assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
  Label L_rtm_retry, L_decrement_retry, L_on_abort;

  if (RTMRetryCount > 0) {
    load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
    bind(L_rtm_retry);
  }
  andi_(R0, mark_word, markWord::monitor_value);  // inflated vs stack-locked|neutral|biased
  bne(CCR0, IsInflated);

  if (PrintPreciseRTMLockingStatistics || profile_rtm) {
    Label L_noincrement;
    if (RTMTotalCountIncrRate > 1) {
      branch_on_random_using_tb(tmp, RTMTotalCountIncrRate, L_noincrement);
    }
    assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
    load_const_optimized(tmp, (address)stack_rtm_counters->total_count_addr(), R0);
    //atomic_inc_ptr(tmp, /*temp, will be reloaded*/mark_word); We don't increment atomically
    ldx(mark_word, tmp);
    addi(mark_word, mark_word, 1);
    stdx(mark_word, tmp);
    bind(L_noincrement);
  }
  tbegin_();
  beq(CCR0, L_on_abort);
  ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);      // Reload in transaction, conflicts need to be tracked.
  andi(R0, mark_word, markWord::biased_lock_mask_in_place); // look at 3 lock bits
  cmpwi(flag, R0, markWord::unlocked_value);                // bits = 001 unlocked
  beq(flag, DONE_LABEL);                                    // all done if unlocked

  if (UseRTMXendForLockBusy) {
    tend_();
    b(L_decrement_retry);
  } else {
    tabort_();
  }
  bind(L_on_abort);
  const Register abort_status_Reg = tmp;
  mftexasr(abort_status_Reg);
  if (PrintPreciseRTMLockingStatistics || profile_rtm) {
    rtm_profiling(abort_status_Reg, /*temp*/mark_word, stack_rtm_counters, method_data, profile_rtm);
  }
  ld(mark_word, oopDesc::mark_offset_in_bytes(), obj); // reload
  if (RTMRetryCount > 0) {
    // Retry on lock abort if abort status is not permanent.
    rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry, &L_decrement_retry);
  } else {
    bind(L_decrement_retry);
  }
}

// Use RTM for inflating locks
// inputs: obj       (object to lock)
//         mark_word (current header - KILLED)
//         boxReg    (on-stack box address (displaced header location) - KILLED)
void MacroAssembler::rtm_inflated_locking(ConditionRegister flag,
                                          Register obj, Register mark_word, Register boxReg,
                                          Register retry_on_busy_count_Reg, Register retry_on_abort_count_Reg,
                                          RTMLockingCounters* rtm_counters,
                                          Metadata* method_data, bool profile_rtm,
                                          Label& DONE_LABEL) {
  assert(UseRTMLocking, "why call this otherwise?");
  Label L_rtm_retry, L_decrement_retry, L_on_abort;
  // Clean monitor_value bit to get valid pointer.
  int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markWord::monitor_value;

  // Store non-null, using boxReg instead of (intptr_t)markWord::unused_mark().
  std(boxReg, BasicLock::displaced_header_offset_in_bytes(), boxReg);
  const Register tmpReg = boxReg;
  const Register owner_addr_Reg = mark_word;
  addi(owner_addr_Reg, mark_word, owner_offset);

  if (RTMRetryCount > 0) {
    load_const_optimized(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy.
    load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort.
    bind(L_rtm_retry);
  }
  if (PrintPreciseRTMLockingStatistics || profile_rtm) {
    Label L_noincrement;
    if (RTMTotalCountIncrRate > 1) {
      branch_on_random_using_tb(R0, RTMTotalCountIncrRate, L_noincrement);
    }
    assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
    load_const(R0, (address)rtm_counters->total_count_addr(), tmpReg);
    //atomic_inc_ptr(R0, tmpReg); We don't increment atomically
    ldx(tmpReg, R0);
    addi(tmpReg, tmpReg, 1);
    stdx(tmpReg, R0);
    bind(L_noincrement);
  }
  tbegin_();
  beq(CCR0, L_on_abort);
  // We don't reload mark word. Will only be reset at safepoint.
  ld(R0, 0, owner_addr_Reg); // Load in transaction, conflicts need to be tracked.
  cmpdi(flag, R0, 0);
  beq(flag, DONE_LABEL);

  if (UseRTMXendForLockBusy) {
    tend_();
    b(L_decrement_retry);
  } else {
    tabort_();
  }
  bind(L_on_abort);
  const Register abort_status_Reg = tmpReg;
  mftexasr(abort_status_Reg);
  if (PrintPreciseRTMLockingStatistics || profile_rtm) {
    rtm_profiling(abort_status_Reg, /*temp*/ owner_addr_Reg, rtm_counters, method_data, profile_rtm);
    // Restore owner_addr_Reg
    ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);
#ifdef ASSERT
    andi_(R0, mark_word, markWord::monitor_value);
    asm_assert_ne("must be inflated", 0xa754); // Deflating only allowed at safepoint.
#endif
    addi(owner_addr_Reg, mark_word, owner_offset);
  }
  if (RTMRetryCount > 0) {
    // Retry on lock abort if abort status is not permanent.
    rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
  }

  // Appears unlocked - try to swing _owner from null to non-null.
  cmpxchgd(flag, /*current val*/ R0, (intptr_t)0, /*new val*/ R16_thread, owner_addr_Reg,
           MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
           MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, &L_decrement_retry, true);

  if (RTMRetryCount > 0) {
    // success done else retry
    b(DONE_LABEL);
    bind(L_decrement_retry);
    // Spin and retry if lock is busy.
    rtm_retry_lock_on_busy(retry_on_busy_count_Reg, owner_addr_Reg, L_rtm_retry);
  } else {
    bind(L_decrement_retry);
  }
}

#endif //  INCLUDE_RTM_OPT

// "The box" is the space on the stack where we copy the object mark.
void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
                                               Register temp, Register displaced_header, Register current_header,
                                               bool try_bias,
                                               RTMLockingCounters* rtm_counters,
                                               RTMLockingCounters* stack_rtm_counters,
                                               Metadata* method_data,
                                               bool use_rtm, bool profile_rtm) {
  assert_different_registers(oop, box, temp, displaced_header, current_header);
  assert(flag != CCR0, "bad condition register");
  Label cont;
  Label object_has_monitor;
  Label cas_failed;

  // Load markWord from object into displaced_header.
  ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop);


  if (try_bias) {
    biased_locking_enter(flag, oop, displaced_header, temp, current_header, cont);
  }

#if INCLUDE_RTM_OPT
  if (UseRTMForStackLocks && use_rtm) {
    rtm_stack_locking(flag, oop, displaced_header, temp, /*temp*/ current_header,
                      stack_rtm_counters, method_data, profile_rtm,
                      cont, object_has_monitor);
  }
#endif // INCLUDE_RTM_OPT

  // Handle existing monitor.
  // The object has an existing monitor iff (mark & monitor_value) != 0.
  andi_(temp, displaced_header, markWord::monitor_value);
  bne(CCR0, object_has_monitor);

  // Set displaced_header to be (markWord of object | UNLOCK_VALUE).
  ori(displaced_header, displaced_header, markWord::unlocked_value);

  // Load Compare Value application register.

  // Initialize the box. (Must happen before we update the object mark!)
  std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);

  // Must fence, otherwise, preceding store(s) may float below cmpxchg.
  // Compare object markWord with mark and if equal exchange scratch1 with object markWord.
  cmpxchgd(/*flag=*/flag,
           /*current_value=*/current_header,
           /*compare_value=*/displaced_header,
           /*exchange_value=*/box,
           /*where=*/oop,
           MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
           MacroAssembler::cmpxchgx_hint_acquire_lock(),
           noreg,
           &cas_failed,
           /*check without membar and ldarx first*/true);
  assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");

  // If the compare-and-exchange succeeded, then we found an unlocked
  // object and we have now locked it.
  b(cont);

  bind(cas_failed);
  // We did not see an unlocked object so try the fast recursive case.

  // Check if the owner is self by comparing the value in the markWord of object
  // (current_header) with the stack pointer.
  sub(current_header, current_header, R1_SP);
  load_const_optimized(temp, ~(os::vm_page_size()-1) | markWord::lock_mask_in_place);

  and_(R0/*==0?*/, current_header, temp);
  // If condition is true we are cont and hence we can store 0 as the
  // displaced header in the box, which indicates that it is a recursive lock.
  mcrf(flag,CCR0);
  std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box);

  // Handle existing monitor.
  b(cont);

  bind(object_has_monitor);
  // The object's monitor m is unlocked iff m->owner == NULL,
  // otherwise m->owner may contain a thread or a stack address.

#if INCLUDE_RTM_OPT
  // Use the same RTM locking code in 32- and 64-bit VM.
  if (use_rtm) {
    rtm_inflated_locking(flag, oop, displaced_header, box, temp, /*temp*/ current_header,
                         rtm_counters, method_data, profile_rtm, cont);
  } else {
#endif // INCLUDE_RTM_OPT

  // Try to CAS m->owner from NULL to current thread.
  addi(temp, displaced_header, ObjectMonitor::owner_offset_in_bytes()-markWord::monitor_value);
  cmpxchgd(/*flag=*/flag,
           /*current_value=*/current_header,
           /*compare_value=*/(intptr_t)0,
           /*exchange_value=*/R16_thread,
           /*where=*/temp,
           MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
           MacroAssembler::cmpxchgx_hint_acquire_lock());

  // Store a non-null value into the box.
  std(box, BasicLock::displaced_header_offset_in_bytes(), box);

# ifdef ASSERT
  bne(flag, cont);
  // We have acquired the monitor, check some invariants.
  addi(/*monitor=*/temp, temp, -ObjectMonitor::owner_offset_in_bytes());
  // Invariant 1: _recursions should be 0.
  //assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size");
  asm_assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), temp,
                            "monitor->_recursions should be 0", -1);
# endif

#if INCLUDE_RTM_OPT
  } // use_rtm()
#endif

  bind(cont);
  // flag == EQ indicates success
  // flag == NE indicates failure
}

void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
                                                 Register temp, Register displaced_header, Register current_header,
                                                 bool try_bias, bool use_rtm) {
  assert_different_registers(oop, box, temp, displaced_header, current_header);
  assert(flag != CCR0, "bad condition register");
  Label cont;
  Label object_has_monitor;

  if (try_bias) {
    biased_locking_exit(flag, oop, current_header, cont);
  }

#if INCLUDE_RTM_OPT
  if (UseRTMForStackLocks && use_rtm) {
    assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
    Label L_regular_unlock;
    ld(current_header, oopDesc::mark_offset_in_bytes(), oop);      // fetch markword
    andi(R0, current_header, markWord::biased_lock_mask_in_place); // look at 3 lock bits
    cmpwi(flag, R0, markWord::unlocked_value);                     // bits = 001 unlocked
    bne(flag, L_regular_unlock);                                   // else RegularLock
    tend_();                                                       // otherwise end...
    b(cont);                                                       // ... and we're done
    bind(L_regular_unlock);
  }
#endif

  // Find the lock address and load the displaced header from the stack.
  ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);

  // If the displaced header is 0, we have a recursive unlock.
  cmpdi(flag, displaced_header, 0);
  beq(flag, cont);

  // Handle existing monitor.
  // The object has an existing monitor iff (mark & monitor_value) != 0.
  RTM_OPT_ONLY( if (!(UseRTMForStackLocks && use_rtm)) ) // skip load if already done
  ld(current_header, oopDesc::mark_offset_in_bytes(), oop);
  andi_(R0, current_header, markWord::monitor_value);
  bne(CCR0, object_has_monitor);

  // Check if it is still a light weight lock, this is is true if we see
  // the stack address of the basicLock in the markWord of the object.
  // Cmpxchg sets flag to cmpd(current_header, box).
  cmpxchgd(/*flag=*/flag,
           /*current_value=*/current_header,
           /*compare_value=*/box,
           /*exchange_value=*/displaced_header,
           /*where=*/oop,
           MacroAssembler::MemBarRel,
           MacroAssembler::cmpxchgx_hint_release_lock(),
           noreg,
           &cont);

  assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");

  // Handle existing monitor.
  b(cont);

  bind(object_has_monitor);
  STATIC_ASSERT(markWord::monitor_value <= INT_MAX);
  addi(current_header, current_header, -(int)markWord::monitor_value); // monitor
  ld(temp,             ObjectMonitor::owner_offset_in_bytes(), current_header);

    // It's inflated.
#if INCLUDE_RTM_OPT
  if (use_rtm) {
    Label L_regular_inflated_unlock;
    // Clean monitor_value bit to get valid pointer
    cmpdi(flag, temp, 0);
    bne(flag, L_regular_inflated_unlock);
    tend_();
    b(cont);
    bind(L_regular_inflated_unlock);
  }
#endif

  ld(displaced_header, ObjectMonitor::recursions_offset_in_bytes(), current_header);
  xorr(temp, R16_thread, temp);      // Will be 0 if we are the owner.
  orr(temp, temp, displaced_header); // Will be 0 if there are 0 recursions.
  cmpdi(flag, temp, 0);
  bne(flag, cont);

  ld(temp,             ObjectMonitor::EntryList_offset_in_bytes(), current_header);
  ld(displaced_header, ObjectMonitor::cxq_offset_in_bytes(), current_header);
  orr(temp, temp, displaced_header); // Will be 0 if both are 0.
  cmpdi(flag, temp, 0);
  bne(flag, cont);
  release();
  std(temp, ObjectMonitor::owner_offset_in_bytes(), current_header);

  bind(cont);
  // flag == EQ indicates success
  // flag == NE indicates failure
}

void MacroAssembler::safepoint_poll(Label& slow_path, Register temp_reg) {
  if (SafepointMechanism::uses_thread_local_poll()) {
    ld(temp_reg, in_bytes(Thread::polling_page_offset()), R16_thread);
    // Armed page has poll_bit set.
    andi_(temp_reg, temp_reg, SafepointMechanism::poll_bit());
  } else {
    lwz(temp_reg, (RegisterOrConstant)(intptr_t)SafepointSynchronize::address_of_state());
    cmpwi(CCR0, temp_reg, SafepointSynchronize::_not_synchronized);
  }
  bne(CCR0, slow_path);
}

void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2, bool needs_frame) {
  BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
  bs->resolve_jobject(this, value, tmp1, tmp2, needs_frame);
}

// Values for last_Java_pc, and last_Java_sp must comply to the rules
// in frame_ppc.hpp.
void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {
  // Always set last_Java_pc and flags first because once last_Java_sp
  // is visible has_last_Java_frame is true and users will look at the
  // rest of the fields. (Note: flags should always be zero before we
  // get here so doesn't need to be set.)

  // Verify that last_Java_pc was zeroed on return to Java
  asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread,
                          "last_Java_pc not zeroed before leaving Java", 0x200);

  // When returning from calling out from Java mode the frame anchor's
  // last_Java_pc will always be set to NULL. It is set here so that
  // if we are doing a call to native (not VM) that we capture the
  // known pc and don't have to rely on the native call having a
  // standard frame linkage where we can find the pc.
  if (last_Java_pc != noreg)
    std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);

  // Set last_Java_sp last.
  std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
}

void MacroAssembler::reset_last_Java_frame(void) {
  asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
                             R16_thread, "SP was not set, still zero", 0x202);

  BLOCK_COMMENT("reset_last_Java_frame {");
  li(R0, 0);

  // _last_Java_sp = 0
  std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);

  // _last_Java_pc = 0
  std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
  BLOCK_COMMENT("} reset_last_Java_frame");
}

void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) {
  assert_different_registers(sp, tmp1);

  // sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via
  // TOP_IJAVA_FRAME_ABI.
  // FIXME: assert that we really have a TOP_IJAVA_FRAME here!
  address entry = pc();
  load_const_optimized(tmp1, entry);

  set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1);
}

void MacroAssembler::get_vm_result(Register oop_result) {
  // Read:
  //   R16_thread
  //   R16_thread->in_bytes(JavaThread::vm_result_offset())
  //
  // Updated:
  //   oop_result
  //   R16_thread->in_bytes(JavaThread::vm_result_offset())

  verify_thread();

  ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread);
  li(R0, 0);
  std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);

  verify_oop(oop_result, FILE_AND_LINE);
}

void MacroAssembler::get_vm_result_2(Register metadata_result) {
  // Read:
  //   R16_thread
  //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
  //
  // Updated:
  //   metadata_result
  //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())

  ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
  li(R0, 0);
  std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
}

Register MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided.
  if (CompressedKlassPointers::base() != 0) {
    // Use dst as temp if it is free.
    sub_const_optimized(dst, current, CompressedKlassPointers::base(), R0);
    current = dst;
  }
  if (CompressedKlassPointers::shift() != 0) {
    srdi(dst, current, CompressedKlassPointers::shift());
    current = dst;
  }
  return current;
}

void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) {
  if (UseCompressedClassPointers) {
    Register compressedKlass = encode_klass_not_null(ck, klass);
    stw(compressedKlass, oopDesc::klass_offset_in_bytes(), dst_oop);
  } else {
    std(klass, oopDesc::klass_offset_in_bytes(), dst_oop);
  }
}

void MacroAssembler::store_klass_gap(Register dst_oop, Register val) {
  if (UseCompressedClassPointers) {
    if (val == noreg) {
      val = R0;
      li(val, 0);
    }
    stw(val, oopDesc::klass_gap_offset_in_bytes(), dst_oop); // klass gap if compressed
  }
}

int MacroAssembler::instr_size_for_decode_klass_not_null() {
  if (!UseCompressedClassPointers) return 0;
  int num_instrs = 1;  // shift or move
  if (CompressedKlassPointers::base() != 0) num_instrs = 7;  // shift + load const + add
  return num_instrs * BytesPerInstWord;
}

void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  assert(dst != R0, "Dst reg may not be R0, as R0 is used here.");
  if (src == noreg) src = dst;
  Register shifted_src = src;
  if (CompressedKlassPointers::shift() != 0 ||
      CompressedKlassPointers::base() == 0 && src != dst) {  // Move required.
    shifted_src = dst;
    sldi(shifted_src, src, CompressedKlassPointers::shift());
  }
  if (CompressedKlassPointers::base() != 0) {
    add_const_optimized(dst, shifted_src, CompressedKlassPointers::base(), R0);
  }
}

void MacroAssembler::load_klass(Register dst, Register src) {
  if (UseCompressedClassPointers) {
    lwz(dst, oopDesc::klass_offset_in_bytes(), src);
    // Attention: no null check here!
    decode_klass_not_null(dst, dst);
  } else {
    ld(dst, oopDesc::klass_offset_in_bytes(), src);
  }
}

// ((OopHandle)result).resolve();
void MacroAssembler::resolve_oop_handle(Register result) {
  // OopHandle::resolve is an indirection.
  ld(result, 0, result);
}

void MacroAssembler::load_mirror_from_const_method(Register mirror, Register const_method) {
  ld(mirror, in_bytes(ConstMethod::constants_offset()), const_method);
  ld(mirror, ConstantPool::pool_holder_offset_in_bytes(), mirror);
  ld(mirror, in_bytes(Klass::java_mirror_offset()), mirror);
  resolve_oop_handle(mirror);
}

void MacroAssembler::load_method_holder(Register holder, Register method) {
  ld(holder, in_bytes(Method::const_offset()), method);
  ld(holder, in_bytes(ConstMethod::constants_offset()), holder);
  ld(holder, ConstantPool::pool_holder_offset_in_bytes(), holder);
}

// Clear Array
// For very short arrays. tmp == R0 is allowed.
void MacroAssembler::clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp, int offset) {
  if (cnt_dwords > 0) { li(tmp, 0); }
  for (int i = 0; i < cnt_dwords; ++i) { std(tmp, offset + i * 8, base_ptr); }
}

// Version for constant short array length. Kills base_ptr. tmp == R0 is allowed.
void MacroAssembler::clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp) {
  if (cnt_dwords < 8) {
    clear_memory_unrolled(base_ptr, cnt_dwords, tmp);
    return;
  }

  Label loop;
  const long loopcnt   = cnt_dwords >> 1,
             remainder = cnt_dwords & 1;

  li(tmp, loopcnt);
  mtctr(tmp);
  li(tmp, 0);
  bind(loop);
    std(tmp, 0, base_ptr);
    std(tmp, 8, base_ptr);
    addi(base_ptr, base_ptr, 16);
    bdnz(loop);
  if (remainder) { std(tmp, 0, base_ptr); }
}

// Kills both input registers. tmp == R0 is allowed.
void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp, long const_cnt) {
  // Procedure for large arrays (uses data cache block zero instruction).
    Label startloop, fast, fastloop, small_rest, restloop, done;
    const int cl_size         = VM_Version::L1_data_cache_line_size(),
              cl_dwords       = cl_size >> 3,
              cl_dw_addr_bits = exact_log2(cl_dwords),
              dcbz_min        = 1,  // Min count of dcbz executions, needs to be >0.
              min_cnt         = ((dcbz_min + 1) << cl_dw_addr_bits) - 1;

  if (const_cnt >= 0) {
    // Constant case.
    if (const_cnt < min_cnt) {
      clear_memory_constlen(base_ptr, const_cnt, tmp);
      return;
    }
    load_const_optimized(cnt_dwords, const_cnt, tmp);
  } else {
    // cnt_dwords already loaded in register. Need to check size.
    cmpdi(CCR1, cnt_dwords, min_cnt); // Big enough? (ensure >= dcbz_min lines included).
    blt(CCR1, small_rest);
  }
    rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits); // Extract dword offset within first cache line.
    beq(CCR0, fast);                                  // Already 128byte aligned.

    subfic(tmp, tmp, cl_dwords);
    mtctr(tmp);                        // Set ctr to hit 128byte boundary (0<ctr<cl_dwords).
    subf(cnt_dwords, tmp, cnt_dwords); // rest.
    li(tmp, 0);

  bind(startloop);                     // Clear at the beginning to reach 128byte boundary.
    std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
    addi(base_ptr, base_ptr, 8);
    bdnz(startloop);

  bind(fast);                                  // Clear 128byte blocks.
    srdi(tmp, cnt_dwords, cl_dw_addr_bits);    // Loop count for 128byte loop (>0).
    andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords.
    mtctr(tmp);                                // Load counter.

  bind(fastloop);
    dcbz(base_ptr);                    // Clear 128byte aligned block.
    addi(base_ptr, base_ptr, cl_size);
    bdnz(fastloop);

  bind(small_rest);
    cmpdi(CCR0, cnt_dwords, 0);        // size 0?
    beq(CCR0, done);                   // rest == 0
    li(tmp, 0);
    mtctr(cnt_dwords);                 // Load counter.

  bind(restloop);                      // Clear rest.
    std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
    addi(base_ptr, base_ptr, 8);
    bdnz(restloop);

  bind(done);
}

/////////////////////////////////////////// String intrinsics ////////////////////////////////////////////

#ifdef COMPILER2
// Intrinsics for CompactStrings

// Compress char[] to byte[] by compressing 16 bytes at once.
void MacroAssembler::string_compress_16(Register src, Register dst, Register cnt,
                                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
                                        Label& Lfailure) {

  const Register tmp0 = R0;
  assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
  Label Lloop, Lslow;

  // Check if cnt >= 8 (= 16 bytes)
  lis(tmp1, 0xFF);                // tmp1 = 0x00FF00FF00FF00FF
  srwi_(tmp2, cnt, 3);
  beq(CCR0, Lslow);
  ori(tmp1, tmp1, 0xFF);
  rldimi(tmp1, tmp1, 32, 0);
  mtctr(tmp2);

  // 2x unrolled loop
  bind(Lloop);
  ld(tmp2, 0, src);               // _0_1_2_3 (Big Endian)
  ld(tmp4, 8, src);               // _4_5_6_7

  orr(tmp0, tmp2, tmp4);
  rldicl(tmp3, tmp2, 6*8, 64-24); // _____1_2
  rldimi(tmp2, tmp2, 2*8, 2*8);   // _0_2_3_3
  rldicl(tmp5, tmp4, 6*8, 64-24); // _____5_6
  rldimi(tmp4, tmp4, 2*8, 2*8);   // _4_6_7_7

  andc_(tmp0, tmp0, tmp1);
  bne(CCR0, Lfailure);            // Not latin1.
  addi(src, src, 16);

  rlwimi(tmp3, tmp2, 0*8, 24, 31);// _____1_3
  srdi(tmp2, tmp2, 3*8);          // ____0_2_
  rlwimi(tmp5, tmp4, 0*8, 24, 31);// _____5_7
  srdi(tmp4, tmp4, 3*8);          // ____4_6_

  orr(tmp2, tmp2, tmp3);          // ____0123
  orr(tmp4, tmp4, tmp5);          // ____4567

  stw(tmp2, 0, dst);
  stw(tmp4, 4, dst);
  addi(dst, dst, 8);
  bdnz(Lloop);

  bind(Lslow);                    // Fallback to slow version
}

// Compress char[] to byte[]. cnt must be positive int.
void MacroAssembler::string_compress(Register src, Register dst, Register cnt, Register tmp, Label& Lfailure) {
  Label Lloop;
  mtctr(cnt);

  bind(Lloop);
  lhz(tmp, 0, src);
  cmplwi(CCR0, tmp, 0xff);
  bgt(CCR0, Lfailure);            // Not latin1.
  addi(src, src, 2);
  stb(tmp, 0, dst);
  addi(dst, dst, 1);
  bdnz(Lloop);
}

// Inflate byte[] to char[] by inflating 16 bytes at once.
void MacroAssembler::string_inflate_16(Register src, Register dst, Register cnt,
                                       Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
  const Register tmp0 = R0;
  assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
  Label Lloop, Lslow;

  // Check if cnt >= 8
  srwi_(tmp2, cnt, 3);
  beq(CCR0, Lslow);
  lis(tmp1, 0xFF);                // tmp1 = 0x00FF00FF
  ori(tmp1, tmp1, 0xFF);
  mtctr(tmp2);

  // 2x unrolled loop
  bind(Lloop);
  lwz(tmp2, 0, src);              // ____0123 (Big Endian)
  lwz(tmp4, 4, src);              // ____4567
  addi(src, src, 8);

  rldicl(tmp3, tmp2, 7*8, 64-8);  // _______2
  rlwimi(tmp2, tmp2, 3*8, 16, 23);// ____0113
  rldicl(tmp5, tmp4, 7*8, 64-8);  // _______6
  rlwimi(tmp4, tmp4, 3*8, 16, 23);// ____4557

  andc(tmp0, tmp2, tmp1);         // ____0_1_
  rlwimi(tmp2, tmp3, 2*8, 0, 23); // _____2_3
  andc(tmp3, tmp4, tmp1);         // ____4_5_
  rlwimi(tmp4, tmp5, 2*8, 0, 23); // _____6_7

  rldimi(tmp2, tmp0, 3*8, 0*8);   // _0_1_2_3
  rldimi(tmp4, tmp3, 3*8, 0*8);   // _4_5_6_7

  std(tmp2, 0, dst);
  std(tmp4, 8, dst);
  addi(dst, dst, 16);
  bdnz(Lloop);

  bind(Lslow);                    // Fallback to slow version
}

// Inflate byte[] to char[]. cnt must be positive int.
void MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
  Label Lloop;
  mtctr(cnt);

  bind(Lloop);
  lbz(tmp, 0, src);
  addi(src, src, 1);
  sth(tmp, 0, dst);
  addi(dst, dst, 2);
  bdnz(Lloop);
}

void MacroAssembler::string_compare(Register str1, Register str2,
                                    Register cnt1, Register cnt2,
                                    Register tmp1, Register result, int ae) {
  const Register tmp0 = R0,
                 diff = tmp1;

  assert_different_registers(str1, str2, cnt1, cnt2, tmp0, tmp1, result);
  Label Ldone, Lslow, Lloop, Lreturn_diff;

  // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
  // we interchange str1 and str2 in the UL case and negate the result.
  // Like this, str1 is always latin1 encoded, except for the UU case.
  // In addition, we need 0 (or sign which is 0) extend.

  if (ae == StrIntrinsicNode::UU) {
    srwi(cnt1, cnt1, 1);
  } else {
    clrldi(cnt1, cnt1, 32);
  }

  if (ae != StrIntrinsicNode::LL) {
    srwi(cnt2, cnt2, 1);
  } else {
    clrldi(cnt2, cnt2, 32);
  }

  // See if the lengths are different, and calculate min in cnt1.
  // Save diff in case we need it for a tie-breaker.
  subf_(diff, cnt2, cnt1); // diff = cnt1 - cnt2
  // if (diff > 0) { cnt1 = cnt2; }
  if (VM_Version::has_isel()) {
    isel(cnt1, CCR0, Assembler::greater, /*invert*/ false, cnt2);
  } else {
    Label Lskip;
    blt(CCR0, Lskip);
    mr(cnt1, cnt2);
    bind(Lskip);
  }

  // Rename registers
  Register chr1 = result;
  Register chr2 = tmp0;

  // Compare multiple characters in fast loop (only implemented for same encoding).
  int stride1 = 8, stride2 = 8;
  if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
    int log2_chars_per_iter = (ae == StrIntrinsicNode::LL) ? 3 : 2;
    Label Lfastloop, Lskipfast;

    srwi_(tmp0, cnt1, log2_chars_per_iter);
    beq(CCR0, Lskipfast);
    rldicl(cnt2, cnt1, 0, 64 - log2_chars_per_iter); // Remaining characters.
    li(cnt1, 1 << log2_chars_per_iter); // Initialize for failure case: Rescan characters from current iteration.
    mtctr(tmp0);

    bind(Lfastloop);
    ld(chr1, 0, str1);
    ld(chr2, 0, str2);
    cmpd(CCR0, chr1, chr2);
    bne(CCR0, Lslow);
    addi(str1, str1, stride1);
    addi(str2, str2, stride2);
    bdnz(Lfastloop);
    mr(cnt1, cnt2); // Remaining characters.
    bind(Lskipfast);
  }

  // Loop which searches the first difference character by character.
  cmpwi(CCR0, cnt1, 0);
  beq(CCR0, Lreturn_diff);
  bind(Lslow);
  mtctr(cnt1);

  switch (ae) {
    case StrIntrinsicNode::LL: stride1 = 1; stride2 = 1; break;
    case StrIntrinsicNode::UL: // fallthru (see comment above)
    case StrIntrinsicNode::LU: stride1 = 1; stride2 = 2; break;
    case StrIntrinsicNode::UU: stride1 = 2; stride2 = 2; break;
    default: ShouldNotReachHere(); break;
  }

  bind(Lloop);
  if (stride1 == 1) { lbz(chr1, 0, str1); } else { lhz(chr1, 0, str1); }
  if (stride2 == 1) { lbz(chr2, 0, str2); } else { lhz(chr2, 0, str2); }
  subf_(result, chr2, chr1); // result = chr1 - chr2
  bne(CCR0, Ldone);
  addi(str1, str1, stride1);
  addi(str2, str2, stride2);
  bdnz(Lloop);

  // If strings are equal up to min length, return the length difference.
  bind(Lreturn_diff);
  mr(result, diff);

  // Otherwise, return the difference between the first mismatched chars.
  bind(Ldone);
  if (ae == StrIntrinsicNode::UL) {
    neg(result, result); // Negate result (see note above).
  }
}

void MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2,
                                  Register limit, Register tmp1, Register result, bool is_byte) {
  const Register tmp0 = R0;
  assert_different_registers(ary1, ary2, limit, tmp0, tmp1, result);
  Label Ldone, Lskiploop, Lloop, Lfastloop, Lskipfast;
  bool limit_needs_shift = false;

  if (is_array_equ) {
    const int length_offset = arrayOopDesc::length_offset_in_bytes();
    const int base_offset   = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);

    // Return true if the same array.
    cmpd(CCR0, ary1, ary2);
    beq(CCR0, Lskiploop);

    // Return false if one of them is NULL.
    cmpdi(CCR0, ary1, 0);
    cmpdi(CCR1, ary2, 0);
    li(result, 0);
    cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
    beq(CCR0, Ldone);

    // Load the lengths of arrays.
    lwz(limit, length_offset, ary1);
    lwz(tmp0, length_offset, ary2);

    // Return false if the two arrays are not equal length.
    cmpw(CCR0, limit, tmp0);
    bne(CCR0, Ldone);

    // Load array addresses.
    addi(ary1, ary1, base_offset);
    addi(ary2, ary2, base_offset);
  } else {
    limit_needs_shift = !is_byte;
    li(result, 0); // Assume not equal.
  }

  // Rename registers
  Register chr1 = tmp0;
  Register chr2 = tmp1;

  // Compare 8 bytes per iteration in fast loop.
  const int log2_chars_per_iter = is_byte ? 3 : 2;

  srwi_(tmp0, limit, log2_chars_per_iter + (limit_needs_shift ? 1 : 0));
  beq(CCR0, Lskipfast);
  mtctr(tmp0);

  bind(Lfastloop);
  ld(chr1, 0, ary1);
  ld(chr2, 0, ary2);
  addi(ary1, ary1, 8);
  addi(ary2, ary2, 8);
  cmpd(CCR0, chr1, chr2);
  bne(CCR0, Ldone);
  bdnz(Lfastloop);

  bind(Lskipfast);
  rldicl_(limit, limit, limit_needs_shift ? 64 - 1 : 0, 64 - log2_chars_per_iter); // Remaining characters.
  beq(CCR0, Lskiploop);
  mtctr(limit);

  // Character by character.
  bind(Lloop);
  if (is_byte) {
    lbz(chr1, 0, ary1);
    lbz(chr2, 0, ary2);
    addi(ary1, ary1, 1);
    addi(ary2, ary2, 1);
  } else {
    lhz(chr1, 0, ary1);
    lhz(chr2, 0, ary2);
    addi(ary1, ary1, 2);
    addi(ary2, ary2, 2);
  }
  cmpw(CCR0, chr1, chr2);
  bne(CCR0, Ldone);
  bdnz(Lloop);

  bind(Lskiploop);
  li(result, 1); // All characters are equal.
  bind(Ldone);
}

void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
                                    Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
                                    Register tmp1, Register tmp2, Register tmp3, Register tmp4, int ae) {

  // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
  Label L_TooShort, L_Found, L_NotFound, L_End;
  Register last_addr = haycnt, // Kill haycnt at the beginning.
  addr      = tmp1,
  n_start   = tmp2,
  ch1       = tmp3,
  ch2       = R0;

  assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
  const int h_csize = (ae == StrIntrinsicNode::LL) ? 1 : 2;
  const int n_csize = (ae == StrIntrinsicNode::UU) ? 2 : 1;

  // **************************************************************************************************
  // Prepare for main loop: optimized for needle count >=2, bail out otherwise.
  // **************************************************************************************************

  // Compute last haystack addr to use if no match gets found.
  clrldi(haycnt, haycnt, 32);         // Ensure positive int is valid as 64 bit value.
  addi(addr, haystack, -h_csize);     // Accesses use pre-increment.
  if (needlecntval == 0) { // variable needlecnt
   cmpwi(CCR6, needlecnt, 2);
   clrldi(needlecnt, needlecnt, 32);  // Ensure positive int is valid as 64 bit value.
   blt(CCR6, L_TooShort);             // Variable needlecnt: handle short needle separately.
  }

  if (n_csize == 2) { lwz(n_start, 0, needle); } else { lhz(n_start, 0, needle); } // Load first 2 characters of needle.

  if (needlecntval == 0) { // variable needlecnt
   subf(ch1, needlecnt, haycnt);      // Last character index to compare is haycnt-needlecnt.
   addi(needlecnt, needlecnt, -2);    // Rest of needle.
  } else { // constant needlecnt
  guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately");
  assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate");
   addi(ch1, haycnt, -needlecntval);  // Last character index to compare is haycnt-needlecnt.
   if (needlecntval > 3) { li(needlecnt, needlecntval - 2); } // Rest of needle.
  }

  if (h_csize == 2) { slwi(ch1, ch1, 1); } // Scale to number of bytes.

  if (ae ==StrIntrinsicNode::UL) {
   srwi(tmp4, n_start, 1*8);          // ___0
   rlwimi(n_start, tmp4, 2*8, 0, 23); // _0_1
  }

  add(last_addr, haystack, ch1);      // Point to last address to compare (haystack+2*(haycnt-needlecnt)).

  // Main Loop (now we have at least 2 characters).
  Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2;
  bind(L_OuterLoop); // Search for 1st 2 characters.
  Register addr_diff = tmp4;
   subf(addr_diff, addr, last_addr);  // Difference between already checked address and last address to check.
   addi(addr, addr, h_csize);         // This is the new address we want to use for comparing.
   srdi_(ch2, addr_diff, h_csize);
   beq(CCR0, L_FinalCheck);           // 2 characters left?
   mtctr(ch2);                        // num of characters / 2
  bind(L_InnerLoop);                  // Main work horse (2x unrolled search loop)
   if (h_csize == 2) {                // Load 2 characters of haystack (ignore alignment).
    lwz(ch1, 0, addr);
    lwz(ch2, 2, addr);
   } else {
    lhz(ch1, 0, addr);
    lhz(ch2, 1, addr);
   }
   cmpw(CCR0, ch1, n_start);          // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop).
   cmpw(CCR1, ch2, n_start);
   beq(CCR0, L_Comp1);                // Did we find the needle start?
   beq(CCR1, L_Comp2);
   addi(addr, addr, 2 * h_csize);
   bdnz(L_InnerLoop);
  bind(L_FinalCheck);
   andi_(addr_diff, addr_diff, h_csize); // Remaining characters not covered by InnerLoop: (num of characters) & 1.
   beq(CCR0, L_NotFound);
   if (h_csize == 2) { lwz(ch1, 0, addr); } else { lhz(ch1, 0, addr); } // One position left at which we have to compare.
   cmpw(CCR1, ch1, n_start);
   beq(CCR1, L_Comp1);
  bind(L_NotFound);
   li(result, -1);                    // not found
   b(L_End);

   // **************************************************************************************************
   // Special Case: unfortunately, the variable needle case can be called with needlecnt<2
   // **************************************************************************************************
  if (needlecntval == 0) {           // We have to handle these cases separately.
  Label L_OneCharLoop;
  bind(L_TooShort);
   mtctr(haycnt);
   if (n_csize == 2) { lhz(n_start, 0, needle); } else { lbz(n_start, 0, needle); } // First character of needle
  bind(L_OneCharLoop);
   if (h_csize == 2) { lhzu(ch1, 2, addr); } else { lbzu(ch1, 1, addr); }
   cmpw(CCR1, ch1, n_start);
   beq(CCR1, L_Found);               // Did we find the one character needle?
   bdnz(L_OneCharLoop);
   li(result, -1);                   // Not found.
   b(L_End);
  }

  // **************************************************************************************************
  // Regular Case Part II: compare rest of needle (first 2 characters have been compared already)
  // **************************************************************************************************

  // Compare the rest
  bind(L_Comp2);
   addi(addr, addr, h_csize);        // First comparison has failed, 2nd one hit.
  bind(L_Comp1);                     // Addr points to possible needle start.
  if (needlecntval != 2) {           // Const needlecnt==2?
   if (needlecntval != 3) {
    if (needlecntval == 0) { beq(CCR6, L_Found); } // Variable needlecnt==2?
    Register n_ind = tmp4,
             h_ind = n_ind;
    li(n_ind, 2 * n_csize);          // First 2 characters are already compared, use index 2.
    mtctr(needlecnt);                // Decremented by 2, still > 0.
   Label L_CompLoop;
   bind(L_CompLoop);
    if (ae ==StrIntrinsicNode::UL) {
      h_ind = ch1;
      sldi(h_ind, n_ind, 1);
    }
    if (n_csize == 2) { lhzx(ch2, needle, n_ind); } else { lbzx(ch2, needle, n_ind); }
    if (h_csize == 2) { lhzx(ch1, addr, h_ind); } else { lbzx(ch1, addr, h_ind); }
    cmpw(CCR1, ch1, ch2);
    bne(CCR1, L_OuterLoop);
    addi(n_ind, n_ind, n_csize);
    bdnz(L_CompLoop);
   } else { // No loop required if there's only one needle character left.
    if (n_csize == 2) { lhz(ch2, 2 * 2, needle); } else { lbz(ch2, 2 * 1, needle); }
    if (h_csize == 2) { lhz(ch1, 2 * 2, addr); } else { lbz(ch1, 2 * 1, addr); }
    cmpw(CCR1, ch1, ch2);
    bne(CCR1, L_OuterLoop);
   }
  }
  // Return index ...
  bind(L_Found);
   subf(result, haystack, addr);     // relative to haystack, ...
   if (h_csize == 2) { srdi(result, result, 1); } // in characters.
  bind(L_End);
} // string_indexof

void MacroAssembler::string_indexof_char(Register result, Register haystack, Register haycnt,
                                         Register needle, jchar needleChar, Register tmp1, Register tmp2, bool is_byte) {
  assert_different_registers(haystack, haycnt, needle, tmp1, tmp2);

  Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_NotFound, L_End;
  Register addr = tmp1,
           ch1 = tmp2,
           ch2 = R0;

  const int h_csize = is_byte ? 1 : 2;

//4:
   srwi_(tmp2, haycnt, 1);   // Shift right by exact_log2(UNROLL_FACTOR).
   mr(addr, haystack);
   beq(CCR0, L_FinalCheck);
   mtctr(tmp2);              // Move to count register.
//8:
  bind(L_InnerLoop);         // Main work horse (2x unrolled search loop).
   if (!is_byte) {
    lhz(ch1, 0, addr);
    lhz(ch2, 2, addr);
   } else {
    lbz(ch1, 0, addr);
    lbz(ch2, 1, addr);
   }
   (needle != R0) ? cmpw(CCR0, ch1, needle) : cmplwi(CCR0, ch1, (unsigned int)needleChar);
   (needle != R0) ? cmpw(CCR1, ch2, needle) : cmplwi(CCR1, ch2, (unsigned int)needleChar);
   beq(CCR0, L_Found1);      // Did we find the needle?
   beq(CCR1, L_Found2);
   addi(addr, addr, 2 * h_csize);
   bdnz(L_InnerLoop);
//16:
  bind(L_FinalCheck);
   andi_(R0, haycnt, 1);
   beq(CCR0, L_NotFound);
   if (!is_byte) { lhz(ch1, 0, addr); } else { lbz(ch1, 0, addr); } // One position left at which we have to compare.
   (needle != R0) ? cmpw(CCR1, ch1, needle) : cmplwi(CCR1, ch1, (unsigned int)needleChar);
   beq(CCR1, L_Found1);
//21:
  bind(L_NotFound);
   li(result, -1);           // Not found.
   b(L_End);

  bind(L_Found2);
   addi(addr, addr, h_csize);
//24:
  bind(L_Found1);            // Return index ...
   subf(result, haystack, addr); // relative to haystack, ...
   if (!is_byte) { srdi(result, result, 1); } // in characters.
  bind(L_End);
} // string_indexof_char


void MacroAssembler::has_negatives(Register src, Register cnt, Register result,
                                   Register tmp1, Register tmp2) {
  const Register tmp0 = R0;
  assert_different_registers(src, result, cnt, tmp0, tmp1, tmp2);
  Label Lfastloop, Lslow, Lloop, Lnoneg, Ldone;

  // Check if cnt >= 8 (= 16 bytes)
  lis(tmp1, (int)(short)0x8080);  // tmp1 = 0x8080808080808080
  srwi_(tmp2, cnt, 4);
  li(result, 1);                  // Assume there's a negative byte.
  beq(CCR0, Lslow);
  ori(tmp1, tmp1, 0x8080);
  rldimi(tmp1, tmp1, 32, 0);
  mtctr(tmp2);

  // 2x unrolled loop
  bind(Lfastloop);
  ld(tmp2, 0, src);
  ld(tmp0, 8, src);

  orr(tmp0, tmp2, tmp0);

  and_(tmp0, tmp0, tmp1);
  bne(CCR0, Ldone);               // Found negative byte.
  addi(src, src, 16);

  bdnz(Lfastloop);

  bind(Lslow);                    // Fallback to slow version
  rldicl_(tmp0, cnt, 0, 64-4);
  beq(CCR0, Lnoneg);
  mtctr(tmp0);
  bind(Lloop);
  lbz(tmp0, 0, src);
  addi(src, src, 1);
  andi_(tmp0, tmp0, 0x80);
  bne(CCR0, Ldone);               // Found negative byte.
  bdnz(Lloop);
  bind(Lnoneg);
  li(result, 0);

  bind(Ldone);
}

#endif // Compiler2

// Helpers for Intrinsic Emitters
//
// Revert the byte order of a 32bit value in a register
//   src: 0x44556677
//   dst: 0x77665544
// Three steps to obtain the result:
//  1) Rotate src (as doubleword) left 5 bytes. That puts the leftmost byte of the src word
//     into the rightmost byte position. Afterwards, everything left of the rightmost byte is cleared.
//     This value initializes dst.
//  2) Rotate src (as word) left 3 bytes. That puts the rightmost byte of the src word into the leftmost
//     byte position. Furthermore, byte 5 is rotated into byte 6 position where it is supposed to go.
//     This value is mask inserted into dst with a [0..23] mask of 1s.
//  3) Rotate src (as word) left 1 byte. That puts byte 6 into byte 5 position.
//     This value is mask inserted into dst with a [8..15] mask of 1s.
void MacroAssembler::load_reverse_32(Register dst, Register src) {
  assert_different_registers(dst, src);

  rldicl(dst, src, (4+1)*8, 56);       // Rotate byte 4 into position 7 (rightmost), clear all to the left.
  rlwimi(dst, src,     3*8,  0, 23);   // Insert byte 5 into position 6, 7 into 4, leave pos 7 alone.
  rlwimi(dst, src,     1*8,  8, 15);   // Insert byte 6 into position 5, leave the rest alone.
}

// Calculate the column addresses of the crc32 lookup table into distinct registers.
// This loop-invariant calculation is moved out of the loop body, reducing the loop
// body size from 20 to 16 instructions.
// Returns the offset that was used to calculate the address of column tc3.
// Due to register shortage, setting tc3 may overwrite table. With the return offset
// at hand, the original table address can be easily reconstructed.
int MacroAssembler::crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3) {
  assert(!VM_Version::has_vpmsumb(), "Vector version should be used instead!");

  // Point to 4 byte folding tables (byte-reversed version for Big Endian)
  // Layout: See StubRoutines::generate_crc_constants.
#ifdef VM_LITTLE_ENDIAN
  const int ix0 = 3 * CRC32_TABLE_SIZE;
  const int ix1 = 2 * CRC32_TABLE_SIZE;
  const int ix2 = 1 * CRC32_TABLE_SIZE;
  const int ix3 = 0 * CRC32_TABLE_SIZE;
#else
  const int ix0 = 1 * CRC32_TABLE_SIZE;
  const int ix1 = 2 * CRC32_TABLE_SIZE;
  const int ix2 = 3 * CRC32_TABLE_SIZE;
  const int ix3 = 4 * CRC32_TABLE_SIZE;
#endif
  assert_different_registers(table, tc0, tc1, tc2);
  assert(table == tc3, "must be!");

  addi(tc0, table, ix0);
  addi(tc1, table, ix1);
  addi(tc2, table, ix2);
  if (ix3 != 0) addi(tc3, table, ix3);

  return ix3;
}

/**
 * uint32_t crc;
 * table[crc & 0xFF] ^ (crc >> 8);
 */
void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
  assert_different_registers(crc, table, tmp);
  assert_different_registers(val, table);

  if (crc == val) {                   // Must rotate first to use the unmodified value.
    rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
                                      // As we use a word (4-byte) instruction, we have to adapt the mask bit positions.
    srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
  } else {
    srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
    rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
  }
  lwzx(tmp, table, tmp);
  xorr(crc, crc, tmp);
}

/**
 * Emits code to update CRC-32 with a byte value according to constants in table.
 *
 * @param [in,out]crc   Register containing the crc.
 * @param [in]val       Register containing the byte to fold into the CRC.
 * @param [in]table     Register containing the table of crc constants.
 *
 * uint32_t crc;
 * val = crc_table[(val ^ crc) & 0xFF];
 * crc = val ^ (crc >> 8);
 */
void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
  BLOCK_COMMENT("update_byte_crc32:");
  xorr(val, val, crc);
  fold_byte_crc32(crc, val, table, val);
}

/**
 * @param crc   register containing existing CRC (32-bit)
 * @param buf   register pointing to input byte buffer (byte*)
 * @param len   register containing number of bytes
 * @param table register pointing to CRC table
 */
void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
                                           Register data, bool loopAlignment) {
  assert_different_registers(crc, buf, len, table, data);

  Label L_mainLoop, L_done;
  const int mainLoop_stepping  = 1;
  const int mainLoop_alignment = loopAlignment ? 32 : 4; // (InputForNewCode > 4 ? InputForNewCode : 32) : 4;

  // Process all bytes in a single-byte loop.
  clrldi_(len, len, 32);                         // Enforce 32 bit. Anything to do?
  beq(CCR0, L_done);

  mtctr(len);
  align(mainLoop_alignment);
  BIND(L_mainLoop);
    lbz(data, 0, buf);                           // Byte from buffer, zero-extended.
    addi(buf, buf, mainLoop_stepping);           // Advance buffer position.
    update_byte_crc32(crc, data, table);
    bdnz(L_mainLoop);                            // Iterate.

  bind(L_done);
}

/**
 * Emits code to update CRC-32 with a 4-byte value according to constants in table
 * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c
 */
// A note on the lookup table address(es):
// The implementation uses 4 table columns (byte-reversed versions for Big Endian).
// To save the effort of adding the column offset to the table address each time
// a table element is looked up, it is possible to pass the pre-calculated
// column addresses.
// Uses R9..R12 as work register. Must be saved/restored by caller, if necessary.
void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
                                        Register t0,  Register t1,  Register t2,  Register t3,
                                        Register tc0, Register tc1, Register tc2, Register tc3) {
  assert_different_registers(crc, t3);

  // XOR crc with next four bytes of buffer.
  lwz(t3, bufDisp, buf);
  if (bufInc != 0) {
    addi(buf, buf, bufInc);
  }
  xorr(t3, t3, crc);

  // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
  rlwinm(t0, t3,  2,         24-2, 31-2);  // ((t1 >>  0) & 0xff) << 2
  rlwinm(t1, t3,  32+(2- 8), 24-2, 31-2);  // ((t1 >>  8) & 0xff) << 2
  rlwinm(t2, t3,  32+(2-16), 24-2, 31-2);  // ((t1 >> 16) & 0xff) << 2
  rlwinm(t3, t3,  32+(2-24), 24-2, 31-2);  // ((t1 >> 24) & 0xff) << 2

  // Use the pre-calculated column addresses.
  // Load pre-calculated table values.
  lwzx(t0, tc0, t0);
  lwzx(t1, tc1, t1);
  lwzx(t2, tc2, t2);
  lwzx(t3, tc3, t3);

  // Calculate new crc from table values.
  xorr(t0,  t0, t1);
  xorr(t2,  t2, t3);
  xorr(crc, t0, t2);  // Now crc contains the final checksum value.
}

/**
 * @param crc   register containing existing CRC (32-bit)
 * @param buf   register pointing to input byte buffer (byte*)
 * @param len   register containing number of bytes
 * @param table register pointing to CRC table
 *
 * uses R9..R12 as work register. Must be saved/restored by caller!
 */
void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
                                        Register t0,  Register t1,  Register t2,  Register t3,
                                        Register tc0, Register tc1, Register tc2, Register tc3,
                                        bool invertCRC) {
  assert_different_registers(crc, buf, len, table);

  Label L_mainLoop, L_tail;
  Register  tmp          = t0;
  Register  data         = t0;
  Register  tmp2         = t1;
  const int mainLoop_stepping  = 4;
  const int tailLoop_stepping  = 1;
  const int log_stepping       = exact_log2(mainLoop_stepping);
  const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
  const int complexThreshold   = 2*mainLoop_stepping;

  // Don't test for len <= 0 here. This pathological case should not occur anyway.
  // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles
  // for all well-behaved cases. The situation itself is detected and handled correctly
  // within update_byteLoop_crc32.
  assert(tailLoop_stepping == 1, "check tailLoop_stepping!");

  BLOCK_COMMENT("kernel_crc32_1word {");

  if (invertCRC) {
    nand(crc, crc, crc);                      // 1s complement of crc
  }

  // Check for short (<mainLoop_stepping) buffer.
  cmpdi(CCR0, len, complexThreshold);
  blt(CCR0, L_tail);

  // Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
  // We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
  {
    // Align buf addr to mainLoop_stepping boundary.
    neg(tmp2, buf);                              // Calculate # preLoop iterations for alignment.
    rldicl(tmp2, tmp2, 0, 64-log_stepping);      // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.

    if (complexThreshold > mainLoop_stepping) {
      sub(len, len, tmp2);                       // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
    } else {
      sub(tmp, len, tmp2);                       // Remaining bytes for main loop.
      cmpdi(CCR0, tmp, mainLoop_stepping);
      blt(CCR0, L_tail);                         // For less than one mainloop_stepping left, do only tail processing
      mr(len, tmp);                              // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
    }
    update_byteLoop_crc32(crc, buf, tmp2, table, data, false);
  }

  srdi(tmp2, len, log_stepping);                 // #iterations for mainLoop
  andi(len, len, mainLoop_stepping-1);           // remaining bytes for tailLoop
  mtctr(tmp2);

#ifdef VM_LITTLE_ENDIAN
  Register crc_rv = crc;
#else
  Register crc_rv = tmp;                         // Load_reverse needs separate registers to work on.
                                                 // Occupies tmp, but frees up crc.
  load_reverse_32(crc_rv, crc);                  // Revert byte order because we are dealing with big-endian data.
  tmp = crc;
#endif

  int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);

  align(mainLoop_alignment);                     // Octoword-aligned loop address. Shows 2% improvement.
  BIND(L_mainLoop);
    update_1word_crc32(crc_rv, buf, table, 0, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
    bdnz(L_mainLoop);

#ifndef VM_LITTLE_ENDIAN
  load_reverse_32(crc, crc_rv);                  // Revert byte order because we are dealing with big-endian data.
  tmp = crc_rv;                                  // Tmp uses it's original register again.
#endif

  // Restore original table address for tailLoop.
  if (reconstructTableOffset != 0) {
    addi(table, table, -reconstructTableOffset);
  }

  // Process last few (<complexThreshold) bytes of buffer.
  BIND(L_tail);
  update_byteLoop_crc32(crc, buf, len, table, data, false);

  if (invertCRC) {
    nand(crc, crc, crc);                      // 1s complement of crc
  }
  BLOCK_COMMENT("} kernel_crc32_1word");
}

/**
 * @param crc             register containing existing CRC (32-bit)
 * @param buf             register pointing to input byte buffer (byte*)
 * @param len             register containing number of bytes
 * @param constants       register pointing to precomputed constants
 * @param t0-t6           temp registers
 */
void MacroAssembler::kernel_crc32_vpmsum(Register crc, Register buf, Register len, Register constants,
                                         Register t0, Register t1, Register t2, Register t3,
                                         Register t4, Register t5, Register t6, bool invertCRC) {
  assert_different_registers(crc, buf, len, constants);

  Label L_tail;

  BLOCK_COMMENT("kernel_crc32_vpmsum {");

  if (invertCRC) {
    nand(crc, crc, crc);                      // 1s complement of crc
  }

  // Enforce 32 bit.
  clrldi(len, len, 32);

  // Align if we have enough bytes for the fast version.
  const int alignment = 16,
            threshold = 32;
  Register prealign = t0;

  neg(prealign, buf);
  addi(t1, len, -threshold);
  andi(prealign, prealign, alignment - 1);
  cmpw(CCR0, t1, prealign);
  blt(CCR0, L_tail); // len - prealign < threshold?

  subf(len, prealign, len);
  update_byteLoop_crc32(crc, buf, prealign, constants, t2, false);

  // Calculate from first aligned address as far as possible.
  addi(constants, constants, CRC32_TABLE_SIZE); // Point to vector constants.
  kernel_crc32_vpmsum_aligned(crc, buf, len, constants, t0, t1, t2, t3, t4, t5, t6);
  addi(constants, constants, -CRC32_TABLE_SIZE); // Point to table again.

  // Remaining bytes.
  BIND(L_tail);
  update_byteLoop_crc32(crc, buf, len, constants, t2, false);

  if (invertCRC) {
    nand(crc, crc, crc);                      // 1s complement of crc
  }

  BLOCK_COMMENT("} kernel_crc32_vpmsum");
}

/**
 * @param crc             register containing existing CRC (32-bit)
 * @param buf             register pointing to input byte buffer (byte*)
 * @param len             register containing number of bytes (will get updated to remaining bytes)
 * @param constants       register pointing to CRC table for 128-bit aligned memory
 * @param t0-t6           temp registers
 */
void MacroAssembler::kernel_crc32_vpmsum_aligned(Register crc, Register buf, Register len, Register constants,
    Register t0, Register t1, Register t2, Register t3, Register t4, Register t5, Register t6) {

  // Save non-volatile vector registers (frameless).
  Register offset = t1;
  int offsetInt = 0;
  offsetInt -= 16; li(offset, offsetInt); stvx(VR20, offset, R1_SP);
  offsetInt -= 16; li(offset, offsetInt); stvx(VR21, offset, R1_SP);
  offsetInt -= 16; li(offset, offsetInt); stvx(VR22, offset, R1_SP);
  offsetInt -= 16; li(offset, offsetInt); stvx(VR23, offset, R1_SP);
  offsetInt -= 16; li(offset, offsetInt); stvx(VR24, offset, R1_SP);
  offsetInt -= 16; li(offset, offsetInt); stvx(VR25, offset, R1_SP);
#ifndef VM_LITTLE_ENDIAN
  offsetInt -= 16; li(offset, offsetInt); stvx(VR26, offset, R1_SP);
#endif
  offsetInt -= 8; std(R14, offsetInt, R1_SP);
  offsetInt -= 8; std(R15, offsetInt, R1_SP);

  // Implementation uses an inner loop which uses between 256 and 16 * unroll_factor
  // bytes per iteration. The basic scheme is:
  // lvx: load vector (Big Endian needs reversal)
  // vpmsumw: carry-less 32 bit multiplications with constant representing a large CRC shift
  // vxor: xor partial results together to get unroll_factor2 vectors

  // Outer loop performs the CRC shifts needed to combine the unroll_factor2 vectors.

  // Using 16 * unroll_factor / unroll_factor_2 bytes for constants.
  const int unroll_factor = CRC32_UNROLL_FACTOR,
            unroll_factor2 = CRC32_UNROLL_FACTOR2;

  const int outer_consts_size = (unroll_factor2 - 1) * 16,
            inner_consts_size = (unroll_factor / unroll_factor2) * 16;

  // Support registers.
  Register offs[] = { noreg, t0, t1, t2, t3, t4, t5, t6 };
  Register num_bytes = R14,
           loop_count = R15,
           cur_const = crc; // will live in VCRC
  // Constant array for outer loop: unroll_factor2 - 1 registers,
  // Constant array for inner loop: unroll_factor / unroll_factor2 registers.
  VectorRegister consts0[] = { VR16, VR17, VR18, VR19, VR20, VR21, VR22 },
                 consts1[] = { VR23, VR24 };
  // Data register arrays: 2 arrays with unroll_factor2 registers.
  VectorRegister data0[] = { VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7 },
                 data1[] = { VR8, VR9, VR10, VR11, VR12, VR13, VR14, VR15 };

  VectorRegister VCRC = data0[0];
  VectorRegister Vc = VR25;
  VectorRegister swap_bytes = VR26; // Only for Big Endian.

  // We have at least 1 iteration (ensured by caller).
  Label L_outer_loop, L_inner_loop, L_last;

  // If supported set DSCR pre-fetch to deepest.
  if (VM_Version::has_mfdscr()) {
    load_const_optimized(t0, VM_Version::_dscr_val | 7);
    mtdscr(t0);
  }

  mtvrwz(VCRC, crc); // crc lives in VCRC, now

  for (int i = 1; i < unroll_factor2; ++i) {
    li(offs[i], 16 * i);
  }

  // Load consts for outer loop
  lvx(consts0[0], constants);
  for (int i = 1; i < unroll_factor2 - 1; ++i) {
    lvx(consts0[i], offs[i], constants);
  }

  load_const_optimized(num_bytes, 16 * unroll_factor);

  // Reuse data registers outside of the loop.
  VectorRegister Vtmp = data1[0];
  VectorRegister Vtmp2 = data1[1];
  VectorRegister zeroes = data1[2];

  vspltisb(Vtmp, 0);
  vsldoi(VCRC, Vtmp, VCRC, 8); // 96 bit zeroes, 32 bit CRC.

  // Load vector for vpermxor (to xor both 64 bit parts together)
  lvsl(Vtmp, buf);   // 000102030405060708090a0b0c0d0e0f
  vspltisb(Vc, 4);
  vsl(Vc, Vtmp, Vc); // 00102030405060708090a0b0c0d0e0f0
  xxspltd(Vc->to_vsr(), Vc->to_vsr(), 0);
  vor(Vc, Vtmp, Vc); // 001122334455667708192a3b4c5d6e7f

#ifdef VM_LITTLE_ENDIAN
#define BE_swap_bytes(x)
#else
  vspltisb(Vtmp2, 0xf);
  vxor(swap_bytes, Vtmp, Vtmp2);
#define BE_swap_bytes(x) vperm(x, x, x, swap_bytes)
#endif

  cmpd(CCR0, len, num_bytes);
  blt(CCR0, L_last);

  addi(cur_const, constants, outer_consts_size); // Point to consts for inner loop
  load_const_optimized(loop_count, unroll_factor / (2 * unroll_factor2) - 1); // One double-iteration peeled off.

  // ********** Main loop start **********
  align(32);
  bind(L_outer_loop);

  // Begin of unrolled first iteration (no xor).
  lvx(data1[0], buf);
  for (int i = 1; i < unroll_factor2 / 2; ++i) {
    lvx(data1[i], offs[i], buf);
  }
  vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.
  lvx(consts1[0], cur_const);
  mtctr(loop_count);
  for (int i = 0; i < unroll_factor2 / 2; ++i) {
    BE_swap_bytes(data1[i]);
    if (i == 0) { vxor(data1[0], data1[0], VCRC); } // xor in previous CRC.
    lvx(data1[i + unroll_factor2 / 2], offs[i + unroll_factor2 / 2], buf);
    vpmsumw(data0[i], data1[i], consts1[0]);
  }
  addi(buf, buf, 16 * unroll_factor2);
  subf(len, num_bytes, len);
  lvx(consts1[1], offs[1], cur_const);
  addi(cur_const, cur_const, 32);
  // Begin of unrolled second iteration (head).
  for (int i = 0; i < unroll_factor2 / 2; ++i) {
    BE_swap_bytes(data1[i + unroll_factor2 / 2]);
    if (i == 0) { lvx(data1[0], buf); } else { lvx(data1[i], offs[i], buf); }
    vpmsumw(data0[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2], consts1[0]);
  }
  for (int i = 0; i < unroll_factor2 / 2; ++i) {
    BE_swap_bytes(data1[i]);
    lvx(data1[i + unroll_factor2 / 2], offs[i + unroll_factor2 / 2], buf);
    vpmsumw(data1[i], data1[i], consts1[1]);
  }
  addi(buf, buf, 16 * unroll_factor2);

  // Generate most performance relevant code. Loads + half of the vpmsumw have been generated.
  // Double-iteration allows using the 2 constant registers alternatingly.
  align(32);
  bind(L_inner_loop);
  for (int j = 1; j < 3; ++j) { // j < unroll_factor / unroll_factor2 - 1 for complete unrolling.
    if (j & 1) {
      lvx(consts1[0], cur_const);
    } else {
      lvx(consts1[1], offs[1], cur_const);
      addi(cur_const, cur_const, 32);
    }
    for (int i = 0; i < unroll_factor2; ++i) {
      int idx = i + unroll_factor2 / 2, inc = 0; // For modulo-scheduled input.
      if (idx >= unroll_factor2) { idx -= unroll_factor2; inc = 1; }
      BE_swap_bytes(data1[idx]);
      vxor(data0[i], data0[i], data1[i]);
      if (i == 0) lvx(data1[0], buf); else lvx(data1[i], offs[i], buf);
      vpmsumw(data1[idx], data1[idx], consts1[(j + inc) & 1]);
    }
    addi(buf, buf, 16 * unroll_factor2);
  }
  bdnz(L_inner_loop);

  addi(cur_const, constants, outer_consts_size); // Reset

  // Tail of last iteration (no loads).
  for (int i = 0; i < unroll_factor2 / 2; ++i) {
    BE_swap_bytes(data1[i + unroll_factor2 / 2]);
    vxor(data0[i], data0[i], data1[i]);
    vpmsumw(data1[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2], consts1[1]);
  }
  for (int i = 0; i < unroll_factor2 / 2; ++i) {
    vpmsumw(data0[i], data0[i], consts0[unroll_factor2 - 2 - i]); // First half of fixup shifts.
    vxor(data0[i + unroll_factor2 / 2], data0[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2]);
  }

  // Last data register is ok, other ones need fixup shift.
  for (int i = unroll_factor2 / 2; i < unroll_factor2 - 1; ++i) {
    vpmsumw(data0[i], data0[i], consts0[unroll_factor2 - 2 - i]);
  }

  // Combine to 128 bit result vector VCRC = data0[0].
  for (int i = 1; i < unroll_factor2; i<<=1) {
    for (int j = 0; j <= unroll_factor2 - 2*i; j+=2*i) {
      vxor(data0[j], data0[j], data0[j+i]);
    }
  }
  cmpd(CCR0, len, num_bytes);
  bge(CCR0, L_outer_loop);

  // Last chance with lower num_bytes.
  bind(L_last);
  srdi(loop_count, len, exact_log2(16 * 2 * unroll_factor2)); // Use double-iterations.
  // Point behind last const for inner loop.
  add_const_optimized(cur_const, constants, outer_consts_size + inner_consts_size);
  sldi(R0, loop_count, exact_log2(16 * 2)); // Bytes of constants to be used.
  clrrdi(num_bytes, len, exact_log2(16 * 2 * unroll_factor2));
  subf(cur_const, R0, cur_const); // Point to constant to be used first.

  addic_(loop_count, loop_count, -1); // One double-iteration peeled off.
  bgt(CCR0, L_outer_loop);
  // ********** Main loop end **********

  // Restore DSCR pre-fetch value.
  if (VM_Version::has_mfdscr()) {
    load_const_optimized(t0, VM_Version::_dscr_val);
    mtdscr(t0);
  }

  // ********** Simple loop for remaining 16 byte blocks **********
  {
    Label L_loop, L_done;

    srdi_(t0, len, 4); // 16 bytes per iteration
    clrldi(len, len, 64-4);
    beq(CCR0, L_done);

    // Point to const (same as last const for inner loop).
    add_const_optimized(cur_const, constants, outer_consts_size + inner_consts_size - 16);
    mtctr(t0);
    lvx(Vtmp2, cur_const);

    align(32);
    bind(L_loop);

    lvx(Vtmp, buf);
    addi(buf, buf, 16);
    vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.
    BE_swap_bytes(Vtmp);
    vxor(VCRC, VCRC, Vtmp);
    vpmsumw(VCRC, VCRC, Vtmp2);
    bdnz(L_loop);

    bind(L_done);
  }
  // ********** Simple loop end **********
#undef BE_swap_bytes

  // Point to Barrett constants
  add_const_optimized(cur_const, constants, outer_consts_size + inner_consts_size);

  vspltisb(zeroes, 0);

  // Combine to 64 bit result.
  vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.

  // Reduce to 32 bit CRC: Remainder by multiply-high.
  lvx(Vtmp, cur_const);
  vsldoi(Vtmp2, zeroes, VCRC, 12);  // Extract high 32 bit.
  vpmsumd(Vtmp2, Vtmp2, Vtmp);      // Multiply by inverse long poly.
  vsldoi(Vtmp2, zeroes, Vtmp2, 12); // Extract high 32 bit.
  vsldoi(Vtmp, zeroes, Vtmp, 8);
  vpmsumd(Vtmp2, Vtmp2, Vtmp);      // Multiply quotient by long poly.
  vxor(VCRC, VCRC, Vtmp2);          // Remainder fits into 32 bit.

  // Move result. len is already updated.

/**代码未完, 请加载全部代码(NowJava.com).**/
展开阅读全文

关注时代Java

关注时代Java