/*
* Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "c1/c1_Defs.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "ci/ciUtilities.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "interpreter/interpreter.hpp"
#include "nativeInst_ppc.hpp"
#include "oops/compiledICHolder.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "register_ppc.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/signature.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/align.hpp"
#include "utilities/macros.hpp"
#include "vmreg_ppc.inline.hpp"
// Implementation of StubAssembler
int StubAssembler::call_RT(Register oop_result1, Register metadata_result,
address entry_point, int number_of_arguments) {
set_num_rt_args(0); // Nothing on stack
assert(!(oop_result1->is_valid() || metadata_result->is_valid()) ||
oop_result1 != metadata_result, "registers must be different");
// Currently no stack banging. We assume that there are enough
// StackShadowPages (which have been banged in generate_stack_overflow_check)
// for the stub frame and the runtime frames.
set_last_Java_frame(R1_SP, noreg);
// ARG1 must hold thread address.
mr(R3_ARG1, R16_thread);
address return_pc = call_c_with_frame_resize(entry_point, /*No resize, we have a C compatible frame.*/0);
reset_last_Java_frame();
// Check for pending exceptions.
{
ld(R0, in_bytes(Thread::pending_exception_offset()), R16_thread);
cmpdi(CCR0, R0, 0);
// This used to conditionally jump to forward_exception however it is
// possible if we relocate that the branch will not reach. So we must jump
// around so we can always reach.
Label ok;
beq(CCR0, ok);
// Make sure that the vm_results are cleared.
if (oop_result1->is_valid() || metadata_result->is_valid()) {
li(R0, 0);
if (oop_result1->is_valid()) {
std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);
}
if (metadata_result->is_valid()) {
std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
}
}
if (frame_size() == no_frame_size) {
ShouldNotReachHere(); // We always have a frame size.
//pop_frame(); // pop the stub frame
//ld(R0, _abi(lr), R1_SP);
//mtlr(R0);
//load_const_optimized(R0, StubRoutines::forward_exception_entry());
//mtctr(R0);
//bctr();
} else if (_stub_id == Runtime1::forward_exception_id) {
should_not_reach_here();
} else {
// keep stub frame for next call_RT
//load_const_optimized(R0, Runtime1::entry_for(Runtime1::forward_exception_id));
add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(Runtime1::entry_for(Runtime1::forward_exception_id)));
mtctr(R0);
bctr();
}
bind(ok);
}
// Get oop results if there are any and reset the values in the thread.
if (oop_result1->is_valid()) {
get_vm_result(oop_result1);
}
if (metadata_result->is_valid()) {
get_vm_result_2(metadata_result);
}
return (int)(return_pc - code_section()->start());
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
mr_if_needed(R4_ARG2, arg1);
return call_RT(oop_result1, metadata_result, entry, 1);
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
mr_if_needed(R4_ARG2, arg1);
mr_if_needed(R5_ARG3, arg2); assert(arg2 != R4_ARG2, "smashed argument");
return call_RT(oop_result1, metadata_result, entry, 2);
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
mr_if_needed(R4_ARG2, arg1);
mr_if_needed(R5_ARG3, arg2); assert(arg2 != R4_ARG2, "smashed argument");
mr_if_needed(R6_ARG4, arg3); assert(arg3 != R4_ARG2 && arg3 != R5_ARG3, "smashed argument");
return call_RT(oop_result1, metadata_result, entry, 3);
}
// Implementation of Runtime1
#define __ sasm->
static int cpu_reg_save_offsets[FrameMap::nof_cpu_regs];
static int fpu_reg_save_offsets[FrameMap::nof_fpu_regs];
static int frame_size_in_bytes = -1;
static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers) {
assert(frame_size_in_bytes > frame::abi_reg_args_size, "init");
sasm->set_frame_size(frame_size_in_bytes / BytesPerWord);
int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
int i;
for (i = 0; i < FrameMap::nof_cpu_regs; i++) {
Register r = as_Register(i);
if (FrameMap::reg_needs_save(r)) {
int sp_offset = cpu_reg_save_offsets[i];
oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset>>2), r->as_VMReg());
oop_map->set_callee_saved(VMRegImpl::stack2reg((sp_offset>>2) + 1), r->as_VMReg()->next());
}
}
if (save_fpu_registers) {
for (i = 0; i < FrameMap::nof_fpu_regs; i++) {
FloatRegister r = as_FloatRegister(i);
int sp_offset = fpu_reg_save_offsets[i];
oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset>>2), r->as_VMReg());
oop_map->set_callee_saved(VMRegImpl::stack2reg((sp_offset>>2) + 1), r->as_VMReg()->next());
}
}
return oop_map;
}
static OopMap* save_live_registers(StubAssembler* sasm, bool save_fpu_registers = true,
Register ret_pc = noreg, int stack_preserve = 0) {
if (ret_pc == noreg) {
ret_pc = R0;
__ mflr(ret_pc);
}
__ std(ret_pc, _abi(lr), R1_SP); // C code needs pc in C1 method.
__ push_frame(frame_size_in_bytes + stack_preserve, R0);
// Record volatile registers as callee-save values in an OopMap so
// their save locations will be propagated to the caller frame's
// RegisterMap during StackFrameStream construction (needed for
// deoptimization; see compiledVFrame::create_stack_value).
// OopMap frame sizes are in c2 stack slot sizes (sizeof(jint)).
int i;
for (i = 0; i < FrameMap::nof_cpu_regs; i++) {
Register r = as_Register(i);
if (FrameMap::reg_needs_save(r)) {
int sp_offset = cpu_reg_save_offsets[i];
__ std(r, sp_offset + STACK_BIAS, R1_SP);
}
}
if (save_fpu_registers) {
for (i = 0; i < FrameMap::nof_fpu_regs; i++) {
FloatRegister r = as_FloatRegister(i);
int sp_offset = fpu_reg_save_offsets[i];
__ stfd(r, sp_offset + STACK_BIAS, R1_SP);
}
}
return generate_oop_map(sasm, save_fpu_registers);
}
static void restore_live_registers(StubAssembler* sasm, Register result1, Register result2,
bool restore_fpu_registers = true) {
for (int i = 0; i < FrameMap::nof_cpu_regs; i++) {
Register r = as_Register(i);
if (FrameMap::reg_needs_save(r) && r != result1 && r != result2) {
int sp_offset = cpu_reg_save_offsets[i];
__ ld(r, sp_offset + STACK_BIAS, R1_SP);
}
}
if (restore_fpu_registers) {
for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
FloatRegister r = as_FloatRegister(i);
int sp_offset = fpu_reg_save_offsets[i];
__ lfd(r, sp_offset + STACK_BIAS, R1_SP);
}
}
__ pop_frame();
__ ld(R0, _abi(lr), R1_SP);
__ mtlr(R0);
}
void Runtime1::initialize_pd() {
int i;
int sp_offset = frame::abi_reg_args_size;
for (i = 0; i < FrameMap::nof_cpu_regs; i++) {
Register r = as_Register(i);
if (FrameMap::reg_needs_save(r)) {
cpu_reg_save_offsets[i] = sp_offset;
sp_offset += BytesPerWord;
}
}
for (i = 0; i < FrameMap::nof_fpu_regs; i++) {
fpu_reg_save_offsets[i] = sp_offset;
sp_offset += BytesPerWord;
}
frame_size_in_bytes = align_up(sp_offset, frame::alignment_in_bytes);
}
OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
// Make a frame and preserve the caller's caller-save registers.
OopMap* oop_map = save_live_registers(sasm);
int call_offset;
if (!has_argument) {
call_offset = __ call_RT(noreg, noreg, target);
} else {
call_offset = __ call_RT(noreg, noreg, target, R4_ARG2);
}
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
__ should_not_reach_here();
return oop_maps;
}
static OopMapSet* generate_exception_throw_with_stack_parms(StubAssembler* sasm, address target,
int stack_parms) {
// Make a frame and preserve the caller's caller-save registers.
const int parm_size_in_bytes = align_up(stack_parms << LogBytesPerWord, frame::alignment_in_bytes);
const int padding = parm_size_in_bytes - (stack_parms << LogBytesPerWord);
OopMap* oop_map = save_live_registers(sasm, true, noreg, parm_size_in_bytes);
int call_offset = 0;
switch (stack_parms) {
case 3:
__ ld(R6_ARG4, frame_size_in_bytes + padding + 16, R1_SP);
case 2:
__ ld(R5_ARG3, frame_size_in_bytes + padding + 8, R1_SP);
case 1:
__ ld(R4_ARG2, frame_size_in_bytes + padding + 0, R1_SP);
case 0:
call_offset = __ call_RT(noreg, noreg, target);
break;
default: Unimplemented(); break;
}
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
__ should_not_reach_here();
return oop_maps;
}
OopMapSet* Runtime1::generate_stub_call(StubAssembler* sasm, Register result, address target,
Register arg1, Register arg2, Register arg3) {
// Make a frame and preserve the caller's caller-save registers.
OopMap* oop_map = save_live_registers(sasm);
int call_offset;
if (arg1 == noreg) {
call_offset = __ call_RT(result, noreg, target);
} else if (arg2 == noreg) {
call_offset = __ call_RT(result, noreg, target, arg1);
} else if (arg3 == noreg) {
call_offset = __ call_RT(result, noreg, target, arg1, arg2);
} else {
call_offset = __ call_RT(result, noreg, target, arg1, arg2, arg3);
}
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm, result, noreg);
__ blr();
return oop_maps;
}
static OopMapSet* stub_call_with_stack_parms(StubAssembler* sasm, Register result, address target,
int stack_parms, bool do_return = true) {
// Make a frame and preserve the caller's caller-save registers.
const int parm_size_in_bytes = align_up(stack_parms << LogBytesPerWord, frame::alignment_in_bytes);
const int padding = parm_size_in_bytes - (stack_parms << LogBytesPerWord);
OopMap* oop_map = save_live_registers(sasm, true, noreg, parm_size_in_bytes);
int call_offset = 0;
switch (stack_parms) {
case 3:
__ ld(R6_ARG4, frame_size_in_bytes + padding + 16, R1_SP);
case 2:
__ ld(R5_ARG3, frame_size_in_bytes + padding + 8, R1_SP);
case 1:
__ ld(R4_ARG2, frame_size_in_bytes + padding + 0, R1_SP);
case 0:
call_offset = __ call_RT(result, noreg, target);
break;
default: Unimplemented(); break;
}
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm, result, noreg);
if (do_return) __ blr();
return oop_maps;
}
OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
// Make a frame and preserve the caller's caller-save registers.
OopMap* oop_map = save_live_registers(sasm);
// Call the runtime patching routine, returns non-zero if nmethod got deopted.
int call_offset = __ call_RT(noreg, noreg, target);
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
__ cmpdi(CCR0, R3_RET, 0);
// Re-execute the patched instruction or, if the nmethod was deoptmized,
// return to the deoptimization handler entry that will cause re-execution
// of the current bytecode.
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
// Return to the deoptimization handler entry for unpacking and rexecute.
// If we simply returned the we'd deopt as if any call we patched had just
// returned.
restore_live_registers(sasm, noreg, noreg);
// Return if patching routine returned 0.
__ bclr(Assembler::bcondCRbiIs1, Assembler::bi0(CCR0, Assembler::equal), Assembler::bhintbhBCLRisReturn);
address stub = deopt_blob->unpack_with_reexecution();
//__ load_const_optimized(R0, stub);
__ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub));
__ mtctr(R0);
__ bctr();
return oop_maps;
}
OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
OopMapSet* oop_maps = NULL;
// For better readability.
const bool must_gc_arguments = true;
const bool dont_gc_arguments = false;
// Stub code & info for the different stubs.
switch (id) {
case forward_exception_id:
{
oop_maps = generate_handle_exception(id, sasm);
}
break;
case new_instance_id:
case fast_new_instance_id:
case fast_new_instance_init_check_id:
{
if (id == new_instance_id) {
__ set_info("new_instance", dont_gc_arguments);
} else if (id == fast_new_instance_id) {
__ set_info("fast new_instance", dont_gc_arguments);
} else {
assert(id == fast_new_instance_init_check_id, "bad StubID");
__ set_info("fast new_instance init check", dont_gc_arguments);
}
// We don't support eden allocation.
oop_maps = generate_stub_call(sasm, R3_RET, CAST_FROM_FN_PTR(address, new_instance), R4_ARG2);
}
break;
case counter_overflow_id:
// Bci and method are on stack.
oop_maps = stub_call_with_stack_parms(sasm, noreg, CAST_FROM_FN_PTR(address, counter_overflow), 2);
break;
case new_type_array_id:
case new_object_array_id:
{
if (id == new_type_array_id) {
__ set_info("new_type_array", dont_gc_arguments);
} else {
__ set_info("new_object_array", dont_gc_arguments);
}
#ifdef ASSERT
// Assert object type is really an array of the proper kind.
{
int tag = (id == new_type_array_id) ? Klass::_lh_array_tag_type_value : Klass::_lh_array_tag_obj_value;
Label ok;
__ lwz(R0, in_bytes(Klass::layout_helper_offset()), R4_ARG2);
__ srawi(R0, R0, Klass::_lh_array_tag_shift);
__ cmpwi(CCR0, R0, tag);
__ beq(CCR0, ok);
__ stop("assert(is an array klass)");
__ should_not_reach_here();
__ bind(ok);
}
#endif // ASSERT
// We don't support eden allocation.
if (id == new_type_array_id) {
oop_maps = generate_stub_call(sasm, R3_RET, CAST_FROM_FN_PTR(address, new_type_array), R4_ARG2, R5_ARG3);
} else {
oop_maps = generate_stub_call(sasm, R3_RET, CAST_FROM_FN_PTR(address, new_object_array), R4_ARG2, R5_ARG3);
}
}
break;
case new_multi_array_id:
{
// R4: klass
// R5: rank
// R6: address of 1st dimension
__ set_info("new_multi_array", dont_gc_arguments);
oop_maps = generate_stub_call(sasm, R3_RET, CAST_FROM_FN_PTR(address, new_multi_array), R4_ARG2, R5_ARG3, R6_ARG4);
}
break;
case register_finalizer_id:
{
__ set_info("register_finalizer", dont_gc_arguments);
// This code is called via rt_call. Hence, caller-save registers have been saved.
Register t = R11_scratch1;
// Load the klass and check the has finalizer flag.
__ load_klass(t, R3_ARG1);
__ lwz(t, in_bytes(Klass::access_flags_offset()), t);
__ testbitdi(CCR0, R0, t, exact_log2(JVM_ACC_HAS_FINALIZER));
// Return if has_finalizer bit == 0 (CR0.eq).
__ bclr(Assembler::bcondCRbiIs1, Assembler::bi0(CCR0, Assembler::equal), Assembler::bhintbhBCLRisReturn);
__ mflr(R0);
__ std(R0, _abi(lr), R1_SP);
__ push_frame(frame::abi_reg_args_size, R0); // Empty dummy frame (no callee-save regs).
sasm->set_frame_size(frame::abi_reg_args_size / BytesPerWord);
OopMap* oop_map = new OopMap(frame::abi_reg_args_size / sizeof(jint), 0);
int call_offset = __ call_RT(noreg, noreg,
CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), R3_ARG1);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
__ pop_frame();
__ ld(R0, _abi(lr), R1_SP);
__ mtlr(R0);
__ blr();
}
break;
case throw_range_check_failed_id:
{
__ set_info("range_check_failed", dont_gc_arguments); // Arguments will be discarded.
oop_maps = generate_exception_throw_with_stack_parms(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), 2);
}
break;
case throw_index_exception_id:
{
__ set_info("index_range_check_failed", dont_gc_arguments); // Arguments will be discarded.
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
}
break;
case throw_div0_exception_id:
{
__ set_info("throw_div0_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
}
break;
case throw_null_pointer_exception_id:
{
__ set_info("throw_null_pointer_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
}
break;
case handle_exception_nofpu_id:
case handle_exception_id:
{
__ set_info("handle_exception", dont_gc_arguments);
oop_maps = generate_handle_exception(id, sasm);
}
break;
case handle_exception_from_callee_id:
{
__ set_info("handle_exception_from_callee", dont_gc_arguments);
oop_maps = generate_handle_exception(id, sasm);
}
break;
case unwind_exception_id:
{
const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/,
Rexception_pc = R4 /*LIRGenerator::exceptionPcOpr()*/,
Rexception_save = R31, Rcaller_sp = R30;
__ set_info("unwind_exception", dont_gc_arguments);
__ ld(Rcaller_sp, 0, R1_SP);
__ push_frame_reg_args(0, R0); // dummy frame for C call
__ mr(Rexception_save, Rexception); // save over C call
__ ld(Rexception_pc, _abi(lr), Rcaller_sp); // return pc
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, Rexception_pc);
__ verify_not_null_oop(Rexception_save);
__ mtctr(R3_RET);
__ ld(Rexception_pc, _abi(lr), Rcaller_sp); // return pc
__ mr(R1_SP, Rcaller_sp); // Pop both frames at once.
__ mr(Rexception, Rexception_save); // restore
__ mtlr(Rexception_pc);
__ bctr();
}
break;
case throw_array_store_exception_id:
{
__ set_info("throw_array_store_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
}
break;
case throw_class_cast_exception_id:
{
__ set_info("throw_class_cast_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
}
break;
case throw_incompatible_class_change_error_id:
{
__ set_info("throw_incompatible_class_cast_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
}
break;
case slow_subtype_check_id:
{ // Support for uint StubRoutine::partial_subtype_check( Klass sub, Klass super );
const Register sub_klass = R5,
super_klass = R4,
temp1_reg = R6,
temp2_reg = R0;
__ check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg); // returns with CR0.eq if successful
__ crandc(CCR0, Assembler::equal, CCR0, Assembler::equal); // failed: CR0.ne
__ blr();
}
break;
case monitorenter_nofpu_id:
case monitorenter_id:
{
__ set_info("monitorenter", dont_gc_arguments);
int save_fpu_registers = (id == monitorenter_id);
// Make a frame and preserve the caller's caller-save registers.
OopMap* oop_map = save_live_registers(sasm, save_fpu_registers);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), R4_ARG2, R5_ARG3);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm, noreg, noreg, save_fpu_registers);
__ blr();
}
break;
case monitorexit_nofpu_id:
case monitorexit_id:
{
// note: Really a leaf routine but must setup last java sp
// => use call_RT for now (speed can be improved by
// doing last java sp setup manually).
__ set_info("monitorexit", dont_gc_arguments);
int save_fpu_registers = (id == monitorexit_id);
// Make a frame and preserve the caller's caller-save registers.
OopMap* oop_map = save_live_registers(sasm, save_fpu_registers);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), R4_ARG2);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm, noreg, noreg, save_fpu_registers);
__ blr();
}
break;
case deoptimize_id:
{
__ set_info("deoptimize", dont_gc_arguments);
__ std(R0, -8, R1_SP); // Pass trap_request on stack.
oop_maps = stub_call_with_stack_parms(sasm, noreg, CAST_FROM_FN_PTR(address, deoptimize), 1, /*do_return*/ false);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
address stub = deopt_blob->unpack_with_reexecution();
//__ load_const_optimized(R0, stub);
__ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub));
__ mtctr(R0);
__ bctr();
}
break;
case access_field_patching_id:
{
__ set_info("access_field_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
}
break;
case load_klass_patching_id:
{
__ set_info("load_klass_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
}
break;
case load_mirror_patching_id:
{
__ set_info("load_mirror_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
}
break;
case load_appendix_patching_id:
{
__ set_info("load_appendix_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
}
break;
case dtrace_object_alloc_id:
{ // O0: object
__ unimplemented("stub dtrace_object_alloc_id");
__ set_info("dtrace_object_alloc", dont_gc_arguments);
// // We can't gc here so skip the oopmap but make sure that all
// // the live registers get saved.
// save_live_registers(sasm);
//
// __ save_thread(L7_thread_cache);
// __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc),
// relocInfo::runtime_call_type);
// __ delayed()->mov(I0, O0);
// __ restore_thread(L7_thread_cache);
//
// restore_live_registers(sasm);
// __ ret();
// __ delayed()->restore();
}
break;
case predicate_failed_trap_id:
{
__ set_info("predicate_failed_trap", dont_gc_arguments);
OopMap* oop_map = save_live_registers(sasm);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
restore_live_registers(sasm, noreg, noreg);
address stub = deopt_blob->unpack_with_reexecution();
//__ load_const_optimized(R0, stub);
__ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub));
__ mtctr(R0);
__ bctr();
}
break;
default:
{
__ set_info("unimplemented entry", dont_gc_arguments);
__ mflr(R0);
__ std(R0, _abi(lr), R1_SP);
__ push_frame(frame::abi_reg_args_size, R0); // empty dummy frame
sasm->set_frame_size(frame::abi_reg_args_size / BytesPerWord);
OopMap* oop_map = new OopMap(frame::abi_reg_args_size / sizeof(jint), 0);
__ load_const_optimized(R4_ARG2, (int)id);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), R4_ARG2);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
__ should_not_reach_here();
}
break;
}
return oop_maps;
}
OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler* sasm) {
__ block_comment("generate_handle_exception");
// Save registers, if required.
OopMapSet* oop_maps = new OopMapSet();
OopMap* oop_map = NULL;
const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/,
Rexception_pc = R4 /*LIRGenerator::exceptionPcOpr()*/;
switch (id) {
case forward_exception_id:
// We're handling an exception in the context of a compiled frame.
/**代码未完, 请加载全部代码(NowJava.com).**/