/*
* Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateInterpreterGenerator.hpp"
#include "interpreter/templateTable.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/align.hpp"
#include "utilities/debug.hpp"
#include "utilities/macros.hpp"
// Size of interpreter code. Increase if too small. Interpreter will
// fail with a guarantee ("not enough space for interpreter generation");
// if too small.
// Run with +PrintInterpreter to get the VM to print out the size.
// Max size with JVMTI
int TemplateInterpreter::InterpreterCodeSize = 180 * 1024;
#define __ _masm->
//------------------------------------------------------------------------------------------------------------------------
address TemplateInterpreterGenerator::generate_slow_signature_handler() {
address entry = __ pc();
// callee-save register for saving LR, shared with generate_native_entry
const Register Rsaved_ret_addr = Rtmp_save0;
__ mov(Rsaved_ret_addr, LR);
__ mov(R1, Rmethod);
__ mov(R2, Rlocals);
__ mov(R3, SP);
// Safer to save R9 (when scratched) since callers may have been
// written assuming R9 survives. This is suboptimal but
// probably not important for this slow case call site.
// Note for R9 saving: slow_signature_handler may copy register
// arguments above the current SP (passed as R3). It is safe for
// call_VM to use push and pop to protect additional values on the
// stack if needed.
__ call_VM(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), true /* save R9 if needed*/);
__ add(SP, SP, wordSize); // Skip R0
__ pop(RegisterSet(R1, R3)); // Load arguments passed in registers
#ifdef __ABI_HARD__
// Few alternatives to an always-load-FP-registers approach:
// - parse method signature to detect FP arguments
// - keep a counter/flag on a stack indicationg number of FP arguments in the method.
// The later has been originally implemented and tested but a conditional path could
// eliminate any gain imposed by avoiding 8 double word loads.
__ fldmiad(SP, FloatRegisterSet(D0, 8), writeback);
#endif // __ABI_HARD__
__ ret(Rsaved_ret_addr);
return entry;
}
//
// Various method entries (that c++ and asm interpreter agree upon)
//------------------------------------------------------------------------------------------------------------------------
//
//
// Abstract method entry
// Attempt to execute abstract method. Throw exception
address TemplateInterpreterGenerator::generate_abstract_entry(void) {
address entry_point = __ pc();
__ empty_expression_stack();
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
DEBUG_ONLY(STOP("generate_abstract_entry");) // Should not reach here
return entry_point;
}
address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
// TODO: ARM
return NULL;
address entry_point = __ pc();
STOP("generate_math_entry");
return entry_point;
}
address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
address entry = __ pc();
// Note: There should be a minimal interpreter frame set up when stack
// overflow occurs since we check explicitly for it now.
//
#ifdef ASSERT
{ Label L;
__ sub(Rtemp, FP, - frame::interpreter_frame_monitor_block_top_offset * wordSize);
__ cmp(SP, Rtemp); // Rtemp = maximal SP for current FP,
// (stack grows negative)
__ b(L, ls); // check if frame is complete
__ stop ("interpreter frame not set up");
__ bind(L);
}
#endif // ASSERT
// Restore bcp under the assumption that the current frame is still
// interpreted
__ restore_bcp();
// expression stack must be empty before entering the VM if an exception
// happened
__ empty_expression_stack();
// throw exception
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
__ should_not_reach_here();
return entry;
}
address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
address entry = __ pc();
// index is in R4_ArrayIndexOutOfBounds_index
// expression stack must be empty before entering the VM if an exception happened
__ empty_expression_stack();
// setup parameters
// Array expected in R1.
__ mov(R2, R4_ArrayIndexOutOfBounds_index);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R1, R2);
__ nop(); // to avoid filling CPU pipeline with invalid instructions
__ nop();
__ should_not_reach_here();
return entry;
}
address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
address entry = __ pc();
// object is in R2_ClassCastException_obj
// expression stack must be empty before entering the VM if an exception
// happened
__ empty_expression_stack();
__ mov(R1, R2_ClassCastException_obj);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_ClassCastException),
R1);
__ should_not_reach_here();
return entry;
}
address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
assert(!pass_oop || message == NULL, "either oop or message but not both");
address entry = __ pc();
InlinedString Lname(name);
InlinedString Lmessage(message);
if (pass_oop) {
// object is at TOS
__ pop_ptr(R2);
}
// expression stack must be empty before entering the VM if an exception happened
__ empty_expression_stack();
// setup parameters
__ ldr_literal(R1, Lname);
if (pass_oop) {
__ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), R1, R2);
} else {
if (message != NULL) {
__ ldr_literal(R2, Lmessage);
} else {
__ mov(R2, 0);
}
__ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), R1, R2);
}
// throw exception
__ b(Interpreter::throw_exception_entry());
__ nop(); // to avoid filling CPU pipeline with invalid instructions
__ nop();
__ bind_literal(Lname);
if (!pass_oop && (message != NULL)) {
__ bind_literal(Lmessage);
}
return entry;
}
address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
address entry = __ pc();
__ interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
// Restore stack bottom in case i2c adjusted stack
__ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
// and NULL it as marker that SP is now tos until next java call
__ mov(Rtemp, (int)NULL_WORD);
__ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
__ restore_method();
__ restore_bcp();
__ restore_dispatch();
__ restore_locals();
const Register Rcache = R2_tmp;
const Register Rindex = R3_tmp;
__ get_cache_and_index_at_bcp(Rcache, Rindex, 1, index_size);
__ add(Rtemp, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
__ ldrb(Rtemp, Address(Rtemp, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
__ check_stack_top();
__ add(Rstack_top, Rstack_top, AsmOperand(Rtemp, lsl, Interpreter::logStackElementSize));
__ convert_retval_to_tos(state);
__ check_and_handle_popframe();
__ check_and_handle_earlyret();
__ dispatch_next(state, step);
return entry;
}
address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) {
address entry = __ pc();
__ interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
// The stack is not extended by deopt but we must NULL last_sp as this
// entry is like a "return".
__ mov(Rtemp, 0);
__ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
__ restore_method();
__ restore_bcp();
__ restore_dispatch();
__ restore_locals();
// handle exceptions
{ Label L;
__ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
__ cbz(Rtemp, L);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
__ should_not_reach_here();
__ bind(L);
}
if (continuation == NULL) {
__ dispatch_next(state, step);
} else {
__ jump_to_entry(continuation);
}
return entry;
}
address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
address entry = __ pc();
switch (type) {
case T_CHAR : /* Nothing to do */ break;
case T_BYTE : /* Nothing to do */ break;
case T_SHORT : /* Nothing to do */ break;
case T_INT : /* Nothing to do */ break;
case T_LONG : /* Nothing to do */ break;
case T_VOID : /* Nothing to do */ break;
case T_DOUBLE : /* Nothing to do */ break;
case T_FLOAT : /* Nothing to do */ break;
case T_BOOLEAN : __ c2bool(R0); break;
case T_OBJECT :
__ ldr(R0, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize));
__ verify_oop(R0);
break;
default : __ should_not_reach_here(); break;
}
__ ret();
return entry;
}
address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
address entry = __ pc();
__ push(state);
__ call_VM(noreg, runtime_entry);
// load current bytecode
__ ldrb(R3_bytecode, Address(Rbcp));
__ dispatch_only_normal(vtos);
return entry;
}
// Helpers for commoning out cases in the various type of method entries.
//
// increment invocation count & check for overflow
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test
//
// In: Rmethod.
//
// Uses R0, R1, Rtemp.
//
void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow,
Label* profile_method,
Label* profile_method_continue) {
Label done;
const Register Rcounters = Rtemp;
const Address invocation_counter(Rcounters,
MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset());
// Note: In tiered we increment either counters in MethodCounters* or
// in MDO depending if we're profiling or not.
if (TieredCompilation) {
int increment = InvocationCounter::count_increment;
Label no_mdo;
if (ProfileInterpreter) {
// Are we profiling?
__ ldr(R1_tmp, Address(Rmethod, Method::method_data_offset()));
__ cbz(R1_tmp, no_mdo);
// Increment counter in the MDO
const Address mdo_invocation_counter(R1_tmp,
in_bytes(MethodData::invocation_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
const Address mask(R1_tmp, in_bytes(MethodData::invoke_mask_offset()));
__ increment_mask_and_jump(mdo_invocation_counter, increment, mask, R0_tmp, Rtemp, eq, overflow);
__ b(done);
}
__ bind(no_mdo);
__ get_method_counters(Rmethod, Rcounters, done);
const Address mask(Rcounters, in_bytes(MethodCounters::invoke_mask_offset()));
__ increment_mask_and_jump(invocation_counter, increment, mask, R0_tmp, R1_tmp, eq, overflow);
__ bind(done);
} else { // not TieredCompilation
const Address backedge_counter(Rcounters,
MethodCounters::backedge_counter_offset() +
InvocationCounter::counter_offset());
const Register Ricnt = R0_tmp; // invocation counter
const Register Rbcnt = R1_tmp; // backedge counter
__ get_method_counters(Rmethod, Rcounters, done);
if (ProfileInterpreter) {
const Register Riic = R1_tmp;
__ ldr_s32(Riic, Address(Rcounters, MethodCounters::interpreter_invocation_counter_offset()));
__ add(Riic, Riic, 1);
__ str_32(Riic, Address(Rcounters, MethodCounters::interpreter_invocation_counter_offset()));
}
// Update standard invocation counters
__ ldr_u32(Ricnt, invocation_counter);
__ ldr_u32(Rbcnt, backedge_counter);
__ add(Ricnt, Ricnt, InvocationCounter::count_increment);
__ bic(Rbcnt, Rbcnt, ~InvocationCounter::count_mask_value); // mask out the status bits
__ str_32(Ricnt, invocation_counter); // save invocation count
__ add(Ricnt, Ricnt, Rbcnt); // add both counters
// profile_method is non-null only for interpreted method so
// profile_method != NULL == !native_call
// BytecodeInterpreter only calls for native so code is elided.
if (ProfileInterpreter && profile_method != NULL) {
assert(profile_method_continue != NULL, "should be non-null");
// Test to see if we should create a method data oop
// Reuse R1_tmp as we don't need backedge counters anymore.
Address profile_limit(Rcounters, in_bytes(MethodCounters::interpreter_profile_limit_offset()));
__ ldr_s32(R1_tmp, profile_limit);
__ cmp_32(Ricnt, R1_tmp);
__ b(*profile_method_continue, lt);
// if no method data exists, go to profile_method
__ test_method_data_pointer(R1_tmp, *profile_method);
}
Address invoke_limit(Rcounters, in_bytes(MethodCounters::interpreter_invocation_limit_offset()));
__ ldr_s32(R1_tmp, invoke_limit);
__ cmp_32(Ricnt, R1_tmp);
__ b(*overflow, hs);
__ bind(done);
}
}
void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
// InterpreterRuntime::frequency_counter_overflow takes one argument
// indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
// The call returns the address of the verified entry point for the method or NULL
// if the compilation did not complete (either went background or bailed out).
__ mov(R1, (int)false);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R1);
// jump to the interpreted entry.
__ b(do_continue);
}
void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
// Check if we've got enough room on the stack for
// - overhead;
// - locals;
// - expression stack.
//
// Registers on entry:
//
// R3 = number of additional locals
// Rthread
// Rmethod
// Registers used: R0, R1, R2, Rtemp.
const Register Radditional_locals = R3;
const Register RmaxStack = R2;
// monitor entry size
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
// total overhead size: entry_size + (saved registers, thru expr stack bottom).
// be sure to change this if you add/subtract anything to/from the overhead area
const int overhead_size = (frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset)*wordSize + entry_size;
// Pages reserved for VM runtime calls and subsequent Java calls.
const int reserved_pages = JavaThread::stack_shadow_zone_size();
// Thread::stack_size() includes guard pages, and they should not be touched.
const int guard_pages = JavaThread::stack_guard_zone_size();
__ ldr(R0, Address(Rthread, Thread::stack_base_offset()));
__ ldr(R1, Address(Rthread, Thread::stack_size_offset()));
__ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
__ ldrh(RmaxStack, Address(Rtemp, ConstMethod::max_stack_offset()));
__ sub_slow(Rtemp, SP, overhead_size + reserved_pages + guard_pages + Method::extra_stack_words());
// reserve space for additional locals
__ sub(Rtemp, Rtemp, AsmOperand(Radditional_locals, lsl, Interpreter::logStackElementSize));
// stack size
__ sub(R0, R0, R1);
// reserve space for expression stack
__ sub(Rtemp, Rtemp, AsmOperand(RmaxStack, lsl, Interpreter::logStackElementSize));
__ cmp(Rtemp, R0);
__ mov(SP, Rsender_sp, ls); // restore SP
__ b(StubRoutines::throw_StackOverflowError_entry(), ls);
}
// Allocate monitor and lock method (asm interpreter)
//
void TemplateInterpreterGenerator::lock_method() {
// synchronize method
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
assert ((entry_size % StackAlignmentInBytes) == 0, "should keep stack alignment");
#ifdef ASSERT
{ Label L;
__ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
__ tbnz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L);
__ stop("method doesn't need synchronization");
__ bind(L);
}
#endif // ASSERT
// get synchronization object
{ Label done;
__ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
__ tst(Rtemp, JVM_ACC_STATIC);
__ ldr(R0, Address(Rlocals, Interpreter::local_offset_in_bytes(0)), eq); // get receiver (assume this is frequent case)
__ b(done, eq);
__ load_mirror(R0, Rmethod, Rtemp);
__ bind(done);
__ resolve(IS_NOT_NULL, R0);
}
// add space for monitor & lock
__ sub(Rstack_top, Rstack_top, entry_size);
__ check_stack_top_on_expansion();
// add space for a monitor entry
__ str(Rstack_top, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
// set new monitor block top
__ str(R0, Address(Rstack_top, BasicObjectLock::obj_offset_in_bytes()));
// store object
__ mov(R1, Rstack_top); // monitor entry address
__ lock_object(R1);
}
//
// Generate a fixed interpreter frame. This is identical setup for interpreted methods
// and for native methods hence the shared code.
void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
// Generates the following stack layout:
//
// [ expr. stack bottom ]
// [ saved Rbcp ]
// [ current Rlocals ]
// [ cache ]
// [ mdx ]
// [ Method* ]
// [ last_sp ]
// [ sender_sp ]
// [ saved FP ] <--- FP
// [ saved LR ]
// initialize fixed part of activation frame
__ push(LR); // save return address
__ push(FP); // save FP
__ mov(FP, SP); // establish new FP
__ push(Rsender_sp);
__ mov(R0, 0);
__ push(R0); // leave last_sp as null
// setup Rbcp
if (native_call) {
__ mov(Rbcp, 0); // bcp = 0 for native calls
} else {
__ ldr(Rtemp, Address(Rmethod, Method::const_offset())); // get ConstMethod*
__ add(Rbcp, Rtemp, ConstMethod::codes_offset()); // get codebase
}
__ push(Rmethod); // save Method*
// Get mirror and store it in the frame as GC root for this Method*
__ load_mirror(Rtemp, Rmethod, Rtemp);
__ push(Rtemp);
if (ProfileInterpreter) {
__ ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
__ tst(Rtemp, Rtemp);
__ add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()), ne);
__ push(Rtemp); // set the mdp (method data pointer)
} else {
__ push(R0);
}
__ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
__ ldr(Rtemp, Address(Rtemp, ConstMethod::constants_offset()));
__ ldr(Rtemp, Address(Rtemp, ConstantPool::cache_offset_in_bytes()));
__ push(Rtemp); // set constant pool cache
__ push(Rlocals); // set locals pointer
__ push(Rbcp); // set bcp
__ push(R0); // reserve word for pointer to expression stack bottom
__ str(SP, Address(SP, 0)); // set expression stack bottom
}
// End of helpers
//------------------------------------------------------------------------------------------------------------------------
// Entry points
//
// Here we generate the various kind of entries into the interpreter.
// The two main entry type are generic bytecode methods and native call method.
// These both come in synchronized and non-synchronized versions but the
// frame layout they create is very similar. The other method entry
// types are really just special purpose entries that are really entry
// and interpretation all in one. These are for trivial methods like
// accessor, empty, or special math methods.
//
// When control flow reaches any of the entry types for the interpreter
// the following holds ->
//
// Arguments:
//
// Rmethod: Method*
// Rthread: thread
// Rsender_sp: sender sp
// Rparams (SP on 32-bit ARM): pointer to method parameters
//
// LR: return address
//
// Stack layout immediately at entry
//
// [ parameter n ] <--- Rparams (SP on 32-bit ARM)
// ...
// [ parameter 1 ]
// [ expression stack ] (caller's java expression stack)
// Assuming that we don't go to one of the trivial specialized
// entries the stack will look like below when we are ready to execute
// the first bytecode (or call the native routine). The register usage
// will be as the template based interpreter expects.
//
// local variables follow incoming parameters immediately; i.e.
// the return address is saved at the end of the locals.
//
// [ expr. stack ] <--- Rstack_top (SP on 32-bit ARM)
// [ monitor entry ]
// ...
// [ monitor entry ]
// [ expr. stack bottom ]
// [ saved Rbcp ]
// [ current Rlocals ]
// [ cache ]
// [ mdx ]
// [ mirror ]
// [ Method* ]
//
// 32-bit ARM:
// [ last_sp ]
//
// [ sender_sp ]
// [ saved FP ] <--- FP
// [ saved LR ]
// [ optional padding(*)]
// [ local variable m ]
// ...
// [ local variable 1 ]
// [ parameter n ]
// ...
// [ parameter 1 ] <--- Rlocals
//
address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
// Code: _aload_0, _getfield, _areturn
// parameter size = 1
//
// The code that gets generated by this routine is split into 2 parts:
// 1. The "intrinsified" code performing an ON_WEAK_OOP_REF load,
// 2. The slow path - which is an expansion of the regular method entry.
//
// Notes:-
// * An intrinsic is always executed, where an ON_WEAK_OOP_REF load is performed.
// * We may jump to the slow path iff the receiver is null. If the
// Reference object is null then we no longer perform an ON_WEAK_OOP_REF load
// Thus we can use the regular method entry code to generate the NPE.
//
// Rmethod: Method*
// Rthread: thread
// Rsender_sp: sender sp, must be preserved for slow path, set SP to it on fast path
// Rparams: parameters
address entry = __ pc();
Label slow_path;
const Register Rthis = R0;
const Register Rret_addr = Rtmp_save1;
assert_different_registers(Rthis, Rret_addr, Rsender_sp);
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
// Check if local 0 != NULL
// If the receiver is null then it is OK to jump to the slow path.
__ ldr(Rthis, Address(Rparams));
__ cbz(Rthis, slow_path);
// Preserve LR
__ mov(Rret_addr, LR);
// Load the value of the referent field.
const Address field_address(Rthis, referent_offset);
__ load_heap_oop(R0, field_address, Rtemp, R1_tmp, R2_tmp, ON_WEAK_OOP_REF);
// _areturn
__ mov(SP, Rsender_sp);
__ ret(Rret_addr);
// generate a vanilla interpreter entry as the slow path
__ bind(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
return entry;
}
// Not supported
address TemplateInterpreterGenerator::generate_CRC32_update_entry() { return NULL; }
address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return NULL; }
address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return NULL; }
//
// Interpreter stub for calling a native method. (asm interpreter)
// This sets up a somewhat different looking stack for calling the native method
// than the typical interpreter frame setup.
//
address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
// determine code generation flags
bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
// Incoming registers:
//
// Rmethod: Method*
// Rthread: thread
// Rsender_sp: sender sp
// Rparams: parameters
address entry_point = __ pc();
// Register allocation
const Register Rsize_of_params = R6;
const Register Rsig_handler = Rtmp_save0; // R4
const Register Rnative_code = Rtmp_save1; // R5
const Register Rresult_handler = R6;
const Register Rsaved_result_lo = Rtmp_save0; // R4
const Register Rsaved_result_hi = Rtmp_save1; // R5
FloatRegister saved_result_fp;
__ ldr(Rsize_of_params, Address(Rmethod, Method::const_offset()));
__ ldrh(Rsize_of_params, Address(Rsize_of_params, ConstMethod::size_of_parameters_offset()));
// native calls don't need the stack size check since they have no expression stack
// and the arguments are already on the stack and we only add a handful of words
// to the stack
// compute beginning of parameters (Rlocals)
__ sub(Rlocals, Rparams, wordSize);
__ add(Rlocals, Rlocals, AsmOperand(Rsize_of_params, lsl, Interpreter::logStackElementSize));
// reserve stack space for oop_temp
__ mov(R0, 0);
__ push(R0);
generate_fixed_frame(true); // Note: R9 is now saved in the frame
// make sure method is native & not abstract
#ifdef ASSERT
__ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
{
Label L;
__ tbnz(Rtemp, JVM_ACC_NATIVE_BIT, L);
__ stop("tried to execute non-native method as native");
__ bind(L);
}
{ Label L;
__ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L);
__ stop("tried to execute abstract method in interpreter");
__ bind(L);
}
#endif
// increment invocation count & check for overflow
Label invocation_counter_overflow;
if (inc_counter) {
if (synchronized) {
// Avoid unlocking method's monitor in case of exception, as it has not
// been locked yet.
__ set_do_not_unlock_if_synchronized(true, Rtemp);
}
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
}
Label continue_after_compile;
__ bind(continue_after_compile);
if (inc_counter && synchronized) {
__ set_do_not_unlock_if_synchronized(false, Rtemp);
}
// check for synchronized methods
// Must happen AFTER invocation_counter check and stack overflow check,
// so method is not locked if overflows.
//
if (synchronized) {
lock_method();
} else {
// no synchronization necessary
#ifdef ASSERT
{ Label L;
__ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
__ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L);
__ stop("method needs synchronization");
__ bind(L);
}
#endif
}
// start execution
#ifdef ASSERT
{ Label L;
__ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
__ cmp(Rtemp, Rstack_top);
__ b(L, eq);
__ stop("broken stack frame setup in interpreter");
__ bind(L);
}
#endif
__ check_extended_sp(Rtemp);
// jvmti/dtrace support
__ notify_method_entry();
#if R9_IS_SCRATCHED
__ restore_method();
#endif
{
Label L;
__ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset()));
__ cbnz(Rsig_handler, L);
__ mov(R1, Rmethod);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1, true);
__ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset()));
__ bind(L);
}
{
Label L;
__ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset()));
__ cbnz(Rnative_code, L);
__ mov(R1, Rmethod);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1);
__ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset()));
__ bind(L);
}
// Allocate stack space for arguments
// C functions need aligned stack
__ bic(SP, SP, StackAlignmentInBytes - 1);
// Multiply by BytesPerLong instead of BytesPerWord, because calling convention
// may require empty slots due to long alignment, e.g. func(int, jlong, int, jlong)
__ sub(SP, SP, AsmOperand(Rsize_of_params, lsl, LogBytesPerLong));
#ifdef __ABI_HARD__
// Allocate more stack space to accomodate all GP as well as FP registers:
// 4 * wordSize
// 8 * BytesPerLong
int reg_arguments = align_up((4*wordSize) + (8*BytesPerLong), StackAlignmentInBytes);
#else
// Reserve at least 4 words on the stack for loading
// of parameters passed on registers (R0-R3).
// See generate_slow_signature_handler().
// It is also used for JNIEnv & class additional parameters.
int reg_arguments = 4 * wordSize;
#endif // __ABI_HARD__
__ sub(SP, SP, reg_arguments);
// Note: signature handler blows R4 besides all scratch registers.
// See AbstractInterpreterGenerator::generate_slow_signature_handler().
__ call(Rsig_handler);
#if R9_IS_SCRATCHED
__ restore_method();
#endif
__ mov(Rresult_handler, R0);
// Pass JNIEnv and mirror for static methods
{
Label L;
__ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
__ add(R0, Rthread, in_bytes(JavaThread::jni_environment_offset()));
__ tbz(Rtemp, JVM_ACC_STATIC_BIT, L);
__ load_mirror(Rtemp, Rmethod, Rtemp);
__ add(R1, FP, frame::interpreter_frame_oop_temp_offset * wordSize);
__ str(Rtemp, Address(R1, 0));
__ bind(L);
}
__ set_last_Java_frame(SP, FP, true, Rtemp);
// Changing state to _thread_in_native must be the last thing to do
// before the jump to native code. At this moment stack must be
// safepoint-safe and completely prepared for stack walking.
#ifdef ASSERT
{
Label L;
__ ldr_u32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
__ cmp_32(Rtemp, _thread_in_Java);
__ b(L, eq);
__ stop("invalid thread state");
__ bind(L);
}
#endif
// Force all preceding writes to be observed prior to thread state change
__ membar(MacroAssembler::StoreStore, Rtemp);
__ mov(Rtemp, _thread_in_native);
__ str(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
__ call(Rnative_code);
#if R9_IS_SCRATCHED
__ restore_method();
#endif
// Set FPSCR/FPCR to a known state
if (AlwaysRestoreFPU) {
__ restore_default_fp_mode();
}
// Do safepoint check
__ mov(Rtemp, _thread_in_native_trans);
__ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
// Force this write out before the read below
__ membar(MacroAssembler::StoreLoad, Rtemp);
__ ldr_global_s32(Rtemp, SafepointSynchronize::address_of_state());
// Protect the return value in the interleaved code: save it to callee-save registers.
__ mov(Rsaved_result_lo, R0);
__ mov(Rsaved_result_hi, R1);
#ifdef __ABI_HARD__
// preserve native FP result in a callee-saved register
saved_result_fp = D8;
__ fcpyd(saved_result_fp, D0);
#else
saved_result_fp = fnoreg;
#endif // __ABI_HARD__
{
__ ldr_u32(R3, Address(Rthread, JavaThread::suspend_flags_offset()));
__ cmp(Rtemp, SafepointSynchronize::_not_synchronized);
__ cond_cmp(R3, 0, eq);
__ mov(R0, Rthread, ne);
__ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), relocInfo::none, ne);
#if R9_IS_SCRATCHED
__ restore_method();
#endif
}
// Perform Native->Java thread transition
__ mov(Rtemp, _thread_in_Java);
__ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
// Zero handles and last_java_sp
__ reset_last_Java_frame(Rtemp);
__ ldr(R3, Address(Rthread, JavaThread::active_handles_offset()));
__ str_32(__ zero_register(Rtemp), Address(R3, JNIHandleBlock::top_offset_in_bytes()));
if (CheckJNICalls) {
__ str(__ zero_register(Rtemp), Address(Rthread, JavaThread::pending_jni_exception_check_fn_offset()));
}
// Unbox oop result, e.g. JNIHandles::resolve result if it's an oop.
{
Label Lnot_oop;
__ mov_slow(Rtemp, AbstractInterpreter::result_handler(T_OBJECT));
__ cmp(Rtemp, Rresult_handler);
__ b(Lnot_oop, ne);
Register value = Rsaved_result_lo;
__ resolve_jobject(value, // value
Rtemp, // tmp1
R1_tmp); // tmp2
// Store resolved result in frame for GC visibility.
__ str(value, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize));
__ bind(Lnot_oop);
}
// reguard stack if StackOverflow exception happened while in native.
{
__ ldr_u32(Rtemp, Address(Rthread, JavaThread::stack_guard_state_offset()));
__ cmp_32(Rtemp, JavaThread::stack_guard_yellow_reserved_disabled);
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), relocInfo::none, eq);
#if R9_IS_SCRATCHED
__ restore_method();
#endif
}
// check pending exceptions
{
__ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
__ cmp(Rtemp, 0);
__ mov(Rexception_pc, PC, ne);
__ b(StubRoutines::forward_exception_entry(), ne);
}
if (synchronized) {
// address of first monitor
__ sub(R1, FP, - (frame::interpreter_frame_monitor_block_bottom_offset - frame::interpreter_frame_monitor_size()) * wordSize);
__ unlock_object(R1);
}
// jvmti/dtrace support
// Note: This must happen _after_ handling/throwing any exceptions since
// the exception handler code notifies the runtime of method exits
// too. If this happens before, method entry/exit notifications are
// not properly paired (was bug - gri 11/22/99).
__ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI, true, Rsaved_result_lo, Rsaved_result_hi, saved_result_fp);
// Restore the result. Oop result is restored from the stack by the
// result handler.
__ mov(R0, Rsaved_result_lo);
__ mov(R1, Rsaved_result_hi);
#ifdef __ABI_HARD__
// reload native FP result
__ fcpyd(D0, D8);
#endif // __ABI_HARD__
__ blx(Rresult_handler);
// Restore FP/LR, sender_sp and return
__ mov(Rtemp, FP);
__ ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
__ ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize));
__ ret();
if (inc_counter) {
// Handle overflow of counter and compile method
__ bind(invocation_counter_overflow);
generate_counter_overflow(continue_after_compile);
}
return entry_point;
}
//
// Generic interpreted method entry to (asm) interpreter
//
address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
// determine code generation flags
bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
// Rmethod: Method*
// Rthread: thread
// Rsender_sp: sender sp (could differ from SP if we were called via c2i)
// Rparams: pointer to the last parameter in the stack
address entry_point = __ pc();
const Register RconstMethod = R3;
__ ldr(RconstMethod, Address(Rmethod, Method::const_offset()));
__ ldrh(R2, Address(RconstMethod, ConstMethod::size_of_parameters_offset()));
__ ldrh(R3, Address(RconstMethod, ConstMethod::size_of_locals_offset()));
// setup Rlocals
__ sub(Rlocals, Rparams, wordSize);
__ add(Rlocals, Rlocals, AsmOperand(R2, lsl, Interpreter::logStackElementSize));
__ sub(R3, R3, R2); // number of additional locals
// see if we've got enough room on the stack for locals plus overhead.
generate_stack_overflow_check();
// allocate space for locals
// explicitly initialize locals
// Loop is unrolled 4 times
Label loop;
__ mov(R0, 0);
__ bind(loop);
// #1
__ subs(R3, R3, 1);
__ push(R0, ge);
// #2
__ subs(R3, R3, 1, ge);
__ push(R0, ge);
// #3
__ subs(R3, R3, 1, ge);
__ push(R0, ge);
// #4
__ subs(R3, R3, 1, ge);
__ push(R0, ge);
__ b(loop, gt);
// initialize fixed part of activation frame
generate_fixed_frame(false);
__ restore_dispatch();
// make sure method is not native & not abstract
#ifdef ASSERT
__ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
{
Label L;
__ tbz(Rtemp, JVM_ACC_NATIVE_BIT, L);
__ stop("tried to execute native method as non-native");
__ bind(L);
}
{ Label L;
__ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L);
__ stop("tried to execute abstract method in interpreter");
__ bind(L);
}
#endif
// increment invocation count & check for overflow
Label invocation_counter_overflow;
Label profile_method;
Label profile_method_continue;
if (inc_counter) {
if (synchronized) {
// Avoid unlocking method's monitor in case of exception, as it has not
// been locked yet.
__ set_do_not_unlock_if_synchronized(true, Rtemp);
}
generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
if (ProfileInterpreter) {
__ bind(profile_method_continue);
}
}
Label continue_after_compile;
__ bind(continue_after_compile);
if (inc_counter && synchronized) {
__ set_do_not_unlock_if_synchronized(false, Rtemp);
}
#if R9_IS_SCRATCHED
__ restore_method();
#endif
// check for synchronized methods
// Must happen AFTER invocation_counter check and stack overflow check,
// so method is not locked if overflows.
//
if (synchronized) {
// Allocate monitor and lock method
lock_method();
} else {
// no synchronization necessary
#ifdef ASSERT
{ Label L;
__ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
__ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L);
__ stop("method needs synchronization");
__ bind(L);
}
#endif
}
// start execution
#ifdef ASSERT
{ Label L;
__ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
__ cmp(Rtemp, Rstack_top);
__ b(L, eq);
__ stop("broken stack frame setup in interpreter");
__ bind(L);
}
#endif
__ check_extended_sp(Rtemp);
// jvmti support
__ notify_method_entry();
#if R9_IS_SCRATCHED
__ restore_method();
#endif
__ dispatch_next(vtos);
// invocation counter overflow
if (inc_counter) {
if (ProfileInterpreter) {
// We have decided to profile this method in the interpreter
__ bind(profile_method);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
__ set_method_data_pointer_for_bcp();
__ b(profile_method_continue);
}
// Handle overflow of counter and compile method
__ bind(invocation_counter_overflow);
generate_counter_overflow(continue_after_compile);
}
return entry_point;
}
//------------------------------------------------------------------------------------------------------------------------
// Exceptions
void TemplateInterpreterGenerator::generate_throw_exception() {
// Entry point in previous activation (i.e., if the caller was interpreted)
Interpreter::_rethrow_exception_entry = __ pc();
// Rexception_obj: exception
// Clear interpreter_frame_last_sp.
__ mov(Rtemp, 0);
__ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
#if R9_IS_SCRATCHED
__ restore_method();
#endif
__ restore_bcp();
__ restore_dispatch();
__ restore_locals();
// Entry point for exceptions thrown within interpreter code
Interpreter::_throw_exception_entry = __ pc();
// expression stack is undefined here
// Rexception_obj: exception
// Rbcp: exception bcp
__ verify_oop(Rexception_obj);
// expression stack must be empty before entering the VM in case of an exception
__ empty_expression_stack();
// find exception handler address and preserve exception oop
__ mov(R1, Rexception_obj);
__ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), R1);
// R0: exception handler entry point
// Rexception_obj: preserved exception oop
// Rbcp: bcp for exception handler
__ push_ptr(Rexception_obj); // push exception which is now the only value on the stack
__ jump(R0); // jump to exception handler (may be _remove_activation_entry!)
// If the exception is not handled in the current frame the frame is removed and
// the exception is rethrown (i.e. exception continuation is _rethrow_exception).
//
// Note: At this point the bci is still the bxi for the instruction which caused
// the exception and the expression stack is empty. Thus, for any VM calls
// at this point, GC will find a legal oop map (with empty expression stack).
// In current activation
// tos: exception
// Rbcp: exception bcp
//
// JVMTI PopFrame support
//
Interpreter::_remove_activation_preserving_args_entry = __ pc();
__ empty_expression_stack();
// Set the popframe_processing bit in _popframe_condition indicating that we are
// currently handling popframe, so that call_VMs that may happen later do not trigger new
// popframe handling cycles.
__ ldr_s32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset()));
__ orr(Rtemp, Rtemp, (unsigned)JavaThread::popframe_processing_bit);
__ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset()));
{
// Check to see whether we are returning to a deoptimized frame.
// (The PopFrame call ensures that the caller of the popped frame is
// either interpreted or compiled and deoptimizes it if compiled.)
// In this case, we can't call dispatch_next() after the frame is
// popped, but instead must save the incoming arguments and restore
// them after deoptimization has occurred.
//
// Note that we don't compare the return PC against the
// deoptimization blob's unpack entry because of the presence of
// adapter frames in C2.
Label caller_not_deoptimized;
__ ldr(R0, Address(FP, frame::return_addr_offset * wordSize));
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), R0);
__ cbnz_32(R0, caller_not_deoptimized);
// Compute size of arguments for saving when returning to deoptimized caller
__ restore_method();
__ ldr(R0, Address(Rmethod, Method::const_offset()));
__ ldrh(R0, Address(R0, ConstMethod::size_of_parameters_offset()));
__ logical_shift_left(R1, R0, Interpreter::logStackElementSize);
// Save these arguments
__ restore_locals();
__ sub(R2, Rlocals, R1);
__ add(R2, R2, wordSize);
__ mov(R0, Rthread);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R0, R1, R2);
__ remove_activation(vtos, LR,
/* throw_monitor_exception */ false,
/* install_monitor_exception */ false,
/* notify_jvmdi */ false);
// Inform deoptimization that it is responsible for restoring these arguments
__ mov(Rtemp, JavaThread::popframe_force_deopt_reexecution_bit);
__ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset()));
// Continue in deoptimization handler
__ ret();
__ bind(caller_not_deoptimized);
}
__ remove_activation(vtos, R4,
/* throw_monitor_exception */ false,
/* install_monitor_exception */ false,
/* notify_jvmdi */ false);
// Finish with popframe handling
// A previous I2C followed by a deoptimization might have moved the
// outgoing arguments further up the stack. PopFrame expects the
// mutations to those outgoing arguments to be preserved and other
// constraints basically require this frame to look exactly as
// though it had previously invoked an interpreted activation with
// no space between the top of the expression stack (current
// last_sp) and the top of stack. Rather than force deopt to
// maintain this kind of invariant all the time we call a small
// fixup routine to move the mutated arguments onto the top of our
// expression stack if necessary.
__ mov(R1, SP);
__ ldr(R2, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
// PC must point into interpreter here
__ set_last_Java_frame(SP, FP, true, Rtemp);
__ mov(R0, Rthread);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), R0, R1, R2);
__ reset_last_Java_frame(Rtemp);
// Restore the last_sp and null it out
__ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
__ mov(Rtemp, (int)NULL_WORD);
__ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
__ restore_bcp();
__ restore_dispatch();
__ restore_locals();
__ restore_method();
// The method data pointer was incremented already during
// call profiling. We have to restore the mdp for the current bcp.
if (ProfileInterpreter) {
__ set_method_data_pointer_for_bcp();
}
// Clear the popframe condition flag
assert(JavaThread::popframe_inactive == 0, "adjust this code");
__ str_32(__ zero_register(Rtemp), Address(Rthread, JavaThread::popframe_condition_offset()));
#if INCLUDE_JVMTI
{
Label L_done;
__ ldrb(Rtemp, Address(Rbcp, 0));
__ cmp(Rtemp, Bytecodes::_invokestatic);
__ b(L_done, ne);
// The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
// Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
// get local0
__ ldr(R1, Address(Rlocals, 0));
__ mov(R2, Rmethod);
__ mov(R3, Rbcp);
__ call_VM(R0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R1, R2, R3);
__ cbz(R0, L_done);
__ str(R0, Address(Rstack_top));
__ bind(L_done);
}
#endif // INCLUDE_JVMTI
__ dispatch_next(vtos);
// end of PopFrame support
Interpreter::_remove_activation_entry = __ pc();
// preserve exception over this code sequence
__ pop_ptr(R0_tos);
__ str(R0_tos, Address(Rthread, JavaThread::vm_result_offset()));
// remove the activation (without doing throws on illegalMonitorExceptions)
__ remove_activation(vtos, Rexception_pc, false, true, false);
// restore exception
__ get_vm_result(Rexception_obj, Rtemp);
// Inbetween activations - previous activation type unknown yet
// compute continuation point - the continuation point expects
// the following registers set up:
//
// Rexception_obj: exception
// Rexception_pc: return address/pc that threw exception
// SP: expression stack of caller
// FP: frame pointer of caller
__ mov(c_rarg0, Rthread);
__ mov(c_rarg1, Rexception_pc);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), c_rarg0, c_rarg1);
// Note that an "issuing PC" is actually the next PC after the call
__ jump(R0); // jump to exception handler of caller
}
//
/**代码未完, 请加载全部代码(NowJava.com).**/