/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2015, 2019, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/java.hpp"
#include "runtime/os.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/vm_version.hpp"
#include "utilities/macros.hpp"
#include OS_HEADER_INLINE(os)
#include <sys/auxv.h>
#include <asm/hwcap.h>
#ifndef HWCAP_AES
#define HWCAP_AES (1<<3)
#endif
#ifndef HWCAP_PMULL
#define HWCAP_PMULL (1<<4)
#endif
#ifndef HWCAP_SHA1
#define HWCAP_SHA1 (1<<5)
#endif
#ifndef HWCAP_SHA2
#define HWCAP_SHA2 (1<<6)
#endif
#ifndef HWCAP_CRC32
#define HWCAP_CRC32 (1<<7)
#endif
#ifndef HWCAP_ATOMICS
#define HWCAP_ATOMICS (1<<8)
#endif
int VM_Version::_cpu;
int VM_Version::_model;
int VM_Version::_model2;
int VM_Version::_variant;
int VM_Version::_revision;
int VM_Version::_stepping;
bool VM_Version::_dcpop;
VM_Version::PsrInfo VM_Version::_psr_info = { 0, };
static BufferBlob* stub_blob;
static const int stub_size = 550;
extern "C" {
typedef void (*getPsrInfo_stub_t)(void*);
}
static getPsrInfo_stub_t getPsrInfo_stub = NULL;
class VM_Version_StubGenerator: public StubCodeGenerator {
public:
VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
address generate_getPsrInfo() {
StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
# define __ _masm->
address start = __ pc();
// void getPsrInfo(VM_Version::PsrInfo* psr_info);
address entry = __ pc();
__ enter();
__ get_dczid_el0(rscratch1);
__ strw(rscratch1, Address(c_rarg0, in_bytes(VM_Version::dczid_el0_offset())));
__ get_ctr_el0(rscratch1);
__ strw(rscratch1, Address(c_rarg0, in_bytes(VM_Version::ctr_el0_offset())));
__ leave();
__ ret(lr);
# undef __
return start;
}
};
void VM_Version::get_processor_features() {
_supports_cx8 = true;
_supports_atomic_getset4 = true;
_supports_atomic_getadd4 = true;
_supports_atomic_getset8 = true;
_supports_atomic_getadd8 = true;
getPsrInfo_stub(&_psr_info);
int dcache_line = VM_Version::dcache_line_size();
// Limit AllocatePrefetchDistance so that it does not exceed the
// constraint in AllocatePrefetchDistanceConstraintFunc.
if (FLAG_IS_DEFAULT(AllocatePrefetchDistance))
FLAG_SET_DEFAULT(AllocatePrefetchDistance, MIN2(512, 3*dcache_line));
if (FLAG_IS_DEFAULT(AllocatePrefetchStepSize))
FLAG_SET_DEFAULT(AllocatePrefetchStepSize, dcache_line);
if (FLAG_IS_DEFAULT(PrefetchScanIntervalInBytes))
FLAG_SET_DEFAULT(PrefetchScanIntervalInBytes, 3*dcache_line);
if (FLAG_IS_DEFAULT(PrefetchCopyIntervalInBytes))
FLAG_SET_DEFAULT(PrefetchCopyIntervalInBytes, 3*dcache_line);
if (FLAG_IS_DEFAULT(SoftwarePrefetchHintDistance))
FLAG_SET_DEFAULT(SoftwarePrefetchHintDistance, 3*dcache_line);
if (PrefetchCopyIntervalInBytes != -1 &&
((PrefetchCopyIntervalInBytes & 7) || (PrefetchCopyIntervalInBytes >= 32768))) {
warning("PrefetchCopyIntervalInBytes must be -1, or a multiple of 8 and < 32768");
PrefetchCopyIntervalInBytes &= ~7;
if (PrefetchCopyIntervalInBytes >= 32768)
PrefetchCopyIntervalInBytes = 32760;
}
if (AllocatePrefetchDistance !=-1 && (AllocatePrefetchDistance & 7)) {
warning("AllocatePrefetchDistance must be multiple of 8");
AllocatePrefetchDistance &= ~7;
}
if (AllocatePrefetchStepSize & 7) {
warning("AllocatePrefetchStepSize must be multiple of 8");
AllocatePrefetchStepSize &= ~7;
}
if (SoftwarePrefetchHintDistance != -1 &&
(SoftwarePrefetchHintDistance & 7)) {
warning("SoftwarePrefetchHintDistance must be -1, or a multiple of 8");
SoftwarePrefetchHintDistance &= ~7;
}
unsigned long auxv = getauxval(AT_HWCAP);
char buf[512];
_features = auxv;
int cpu_lines = 0;
if (FILE *f = fopen("/proc/cpuinfo", "r")) {
// need a large buffer as the flags line may include lots of text
char buf[1024], *p;
while (fgets(buf, sizeof (buf), f) != NULL) {
if ((p = strchr(buf, ':')) != NULL) {
long v = strtol(p+1, NULL, 0);
if (strncmp(buf, "CPU implementer", sizeof "CPU implementer" - 1) == 0) {
_cpu = v;
cpu_lines++;
} else if (strncmp(buf, "CPU variant", sizeof "CPU variant" - 1) == 0) {
_variant = v;
} else if (strncmp(buf, "CPU part", sizeof "CPU part" - 1) == 0) {
if (_model != v) _model2 = _model;
_model = v;
} else if (strncmp(buf, "CPU revision", sizeof "CPU revision" - 1) == 0) {
_revision = v;
} else if (strncmp(buf, "flags", sizeof("flags") - 1) == 0) {
if (strstr(p+1, "dcpop")) {
_dcpop = true;
}
}
}
}
fclose(f);
}
if (os::supports_map_sync()) {
// if dcpop is available publish data cache line flush size via
// generic field, otherwise let if default to zero thereby
// disabling writeback
if (_dcpop) {
_data_cache_line_flush_size = dcache_line;
}
}
// Enable vendor specific features
// Ampere eMAG
if (_cpu == CPU_AMCC && (_model == 0) && (_variant == 0x3)) {
if (FLAG_IS_DEFAULT(AvoidUnalignedAccesses)) {
FLAG_SET_DEFAULT(AvoidUnalignedAccesses, true);
}
if (FLAG_IS_DEFAULT(UseSIMDForMemoryOps)) {
FLAG_SET_DEFAULT(UseSIMDForMemoryOps, true);
}
if (FLAG_IS_DEFAULT(UseSIMDForArrayEquals)) {
FLAG_SET_DEFAULT(UseSIMDForArrayEquals, !(_revision == 1 || _revision == 2));
}
}
// ThunderX
if (_cpu == CPU_CAVIUM && (_model == 0xA1)) {
if (_variant == 0) _features |= CPU_DMB_ATOMICS;
if (FLAG_IS_DEFAULT(AvoidUnalignedAccesses)) {
FLAG_SET_DEFAULT(AvoidUnalignedAccesses, true);
}
if (FLAG_IS_DEFAULT(UseSIMDForMemoryOps)) {
FLAG_SET_DEFAULT(UseSIMDForMemoryOps, (_variant > 0));
}
if (FLAG_IS_DEFAULT(UseSIMDForArrayEquals)) {
FLAG_SET_DEFAULT(UseSIMDForArrayEquals, false);
}
}
// ThunderX2
if ((_cpu == CPU_CAVIUM && (_model == 0xAF)) ||
(_cpu == CPU_BROADCOM && (_model == 0x516))) {
if (FLAG_IS_DEFAULT(AvoidUnalignedAccesses)) {
FLAG_SET_DEFAULT(AvoidUnalignedAccesses, true);
}
if (FLAG_IS_DEFAULT(UseSIMDForMemoryOps)) {
FLAG_SET_DEFAULT(UseSIMDForMemoryOps, true);
}
}
// HiSilicon TSV110
if (_cpu == CPU_HISILICON && _model == 0xd01) {
if (FLAG_IS_DEFAULT(AvoidUnalignedAccesses)) {
FLAG_SET_DEFAULT(AvoidUnalignedAccesses, true);
}
if (FLAG_IS_DEFAULT(UseSIMDForMemoryOps)) {
FLAG_SET_DEFAULT(UseSIMDForMemoryOps, true);
}
}
// Cortex A53
if (_cpu == CPU_ARM && (_model == 0xd03 || _model2 == 0xd03)) {
_features |= CPU_A53MAC;
if (FLAG_IS_DEFAULT(UseSIMDForArrayEquals)) {
FLAG_SET_DEFAULT(UseSIMDForArrayEquals, false);
}
}
// Cortex A73
if (_cpu == CPU_ARM && (_model == 0xd09 || _model2 == 0xd09)) {
if (FLAG_IS_DEFAULT(SoftwarePrefetchHintDistance)) {
FLAG_SET_DEFAULT(SoftwarePrefetchHintDistance, -1);
}
// A73 is faster with short-and-easy-for-speculative-execution-loop
if (FLAG_IS_DEFAULT(UseSimpleArrayEquals)) {
FLAG_SET_DEFAULT(UseSimpleArrayEquals, true);
}
}
if (_cpu == CPU_ARM && (_model == 0xd07 || _model2 == 0xd07)) _features |= CPU_STXR_PREFETCH;
// If an olde style /proc/cpuinfo (cpu_lines == 1) then if _model is an A57 (0xd07)
// we assume the worst and assume we could be on a big little system and have
// undisclosed A53 cores which we could be swapped to at any stage
if (_cpu == CPU_ARM && cpu_lines == 1 && _model == 0xd07) _features |= CPU_A53MAC;
sprintf(buf, "0x%02x:0x%x:0x%03x:%d", _cpu, _variant, _model, _revision);
if (_model2) sprintf(buf+strlen(buf), "(0x%03x)", _model2);
if (auxv & HWCAP_ASIMD) strcat(buf, ", simd");
if (auxv & HWCAP_CRC32) strcat(buf, ", crc");
if (auxv & HWCAP_AES) strcat(buf, ", aes");
if (auxv & HWCAP_SHA1) strcat(buf, ", sha1");
if (auxv & HWCAP_SHA2) strcat(buf, ", sha256");
if (auxv & HWCAP_ATOMICS) strcat(buf, ", lse");
_features_string = os::strdup(buf);
if (FLAG_IS_DEFAULT(UseCRC32)) {
UseCRC32 = (auxv & HWCAP_CRC32) != 0;
}
if (UseCRC32 && (auxv & HWCAP_CRC32) == 0) {
warning("UseCRC32 specified, but not supported on this CPU");
FLAG_SET_DEFAULT(UseCRC32, false);
}
if (FLAG_IS_DEFAULT(UseAdler32Intrinsics)) {
FLAG_SET_DEFAULT(UseAdler32Intrinsics, true);
}
if (UseVectorizedMismatchIntrinsic) {
warning("UseVectorizedMismatchIntrinsic specified, but not available on this CPU.");
FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
}
if (auxv & HWCAP_ATOMICS) {
if (FLAG_IS_DEFAULT(UseLSE))
FLAG_SET_DEFAULT(UseLSE, true);
} else {
if (UseLSE) {
warning("UseLSE specified, but not supported on this CPU");
FLAG_SET_DEFAULT(UseLSE, false);
}
}
if (auxv & HWCAP_AES) {
UseAES = UseAES || FLAG_IS_DEFAULT(UseAES);
UseAESIntrinsics =
UseAESIntrinsics || (UseAES && FLAG_IS_DEFAULT(UseAESIntrinsics));
if (UseAESIntrinsics && !UseAES) {
warning("UseAESIntrinsics enabled, but UseAES not, enabling");
UseAES = true;
}
} else {
if (UseAES) {
warning("UseAES specified, but not supported on this CPU");
FLAG_SET_DEFAULT(UseAES, false);
}
if (UseAESIntrinsics) {
warning("UseAESIntrinsics specified, but not supported on this CPU");
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
}
if (UseAESCTRIntrinsics) {
warning("AES/CTR intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
}
if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
UseCRC32Intrinsics = true;
}
if (auxv & HWCAP_CRC32) {
if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, true);
}
} else if (UseCRC32CIntrinsics) {
warning("CRC32C is not available on the CPU");
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
}
if (FLAG_IS_DEFAULT(UseFMA)) {
FLAG_SET_DEFAULT(UseFMA, true);
}
if (auxv & (HWCAP_SHA1 | HWCAP_SHA2)) {
if (FLAG_IS_DEFAULT(UseSHA)) {
FLAG_SET_DEFAULT(UseSHA, true);
}
} else if (UseSHA) {
warning("SHA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseSHA, false);
}
if (UseSHA && (auxv & HWCAP_SHA1)) {
if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
}
} else if (UseSHA1Intrinsics) {
warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
}
if (UseSHA && (auxv & HWCAP_SHA2)) {
if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
}
} else if (UseSHA256Intrinsics) {
warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
}
if (UseSHA512Intrinsics) {
warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
}
if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA, false);
}
if (auxv & HWCAP_PMULL) {
if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
FLAG_SET_DEFAULT(UseGHASHIntrinsics, true);
}
} else if (UseGHASHIntrinsics) {
warning("GHASH intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
}
if (is_zva_enabled()) {
if (FLAG_IS_DEFAULT(UseBlockZeroing)) {
FLAG_SET_DEFAULT(UseBlockZeroing, true);
}
if (FLAG_IS_DEFAULT(BlockZeroingLowLimit)) {
FLAG_SET_DEFAULT(BlockZeroingLowLimit, 4 * VM_Version::zva_length());
}
} else if (UseBlockZeroing) {
warning("DC ZVA is not available on this CPU");
/**代码未完, 请加载全部代码(NowJava.com).**/