/*
* Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "asm/assembler.hpp"
#include "c1/c1_CodeStubs.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciArrayKlass.hpp"
#include "ci/ciInstance.hpp"
#include "code/compiledIC.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "nativeInst_aarch64.hpp"
#include "oops/objArrayKlass.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "vmreg_aarch64.inline.hpp"
#ifndef PRODUCT
#define COMMENT(x) do { __ block_comment(x); } while (0)
#else
#define COMMENT(x)
#endif
NEEDS_CLEANUP // remove this definitions ?
const Register IC_Klass = rscratch2; // where the IC klass is cached
const Register SYNC_header = r0; // synchronization header
const Register SHIFT_count = r0; // where count for shift operations must be
#define __ _masm->
static void select_different_registers(Register preserve,
Register extra,
Register &tmp1,
Register &tmp2) {
if (tmp1 == preserve) {
assert_different_registers(tmp1, tmp2, extra);
tmp1 = extra;
} else if (tmp2 == preserve) {
assert_different_registers(tmp1, tmp2, extra);
tmp2 = extra;
}
assert_different_registers(preserve, tmp1, tmp2);
}
static void select_different_registers(Register preserve,
Register extra,
Register &tmp1,
Register &tmp2,
Register &tmp3) {
if (tmp1 == preserve) {
assert_different_registers(tmp1, tmp2, tmp3, extra);
tmp1 = extra;
} else if (tmp2 == preserve) {
assert_different_registers(tmp1, tmp2, tmp3, extra);
tmp2 = extra;
} else if (tmp3 == preserve) {
assert_different_registers(tmp1, tmp2, tmp3, extra);
tmp3 = extra;
}
assert_different_registers(preserve, tmp1, tmp2, tmp3);
}
bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
LIR_Opr LIR_Assembler::receiverOpr() {
return FrameMap::receiver_opr;
}
LIR_Opr LIR_Assembler::osrBufferPointer() {
return FrameMap::as_pointer_opr(receiverOpr()->as_register());
}
//--------------fpu register translations-----------------------
address LIR_Assembler::float_constant(float f) {
address const_addr = __ float_constant(f);
if (const_addr == NULL) {
bailout("const section overflow");
return __ code()->consts()->start();
} else {
return const_addr;
}
}
address LIR_Assembler::double_constant(double d) {
address const_addr = __ double_constant(d);
if (const_addr == NULL) {
bailout("const section overflow");
return __ code()->consts()->start();
} else {
return const_addr;
}
}
address LIR_Assembler::int_constant(jlong n) {
address const_addr = __ long_constant(n);
if (const_addr == NULL) {
bailout("const section overflow");
return __ code()->consts()->start();
} else {
return const_addr;
}
}
void LIR_Assembler::set_24bit_FPU() { Unimplemented(); }
void LIR_Assembler::reset_FPU() { Unimplemented(); }
void LIR_Assembler::fpop() { Unimplemented(); }
void LIR_Assembler::fxch(int i) { Unimplemented(); }
void LIR_Assembler::fld(int i) { Unimplemented(); }
void LIR_Assembler::ffree(int i) { Unimplemented(); }
void LIR_Assembler::breakpoint() { Unimplemented(); }
void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
//-------------------------------------------
static Register as_reg(LIR_Opr op) {
return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
}
static jlong as_long(LIR_Opr data) {
jlong result;
switch (data->type()) {
case T_INT:
result = (data->as_jint());
break;
case T_LONG:
result = (data->as_jlong());
break;
default:
ShouldNotReachHere();
result = 0; // unreachable
}
return result;
}
Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
Register base = addr->base()->as_pointer_register();
LIR_Opr opr = addr->index();
if (opr->is_cpu_register()) {
Register index;
if (opr->is_single_cpu())
index = opr->as_register();
else
index = opr->as_register_lo();
assert(addr->disp() == 0, "must be");
switch(opr->type()) {
case T_INT:
return Address(base, index, Address::sxtw(addr->scale()));
case T_LONG:
return Address(base, index, Address::lsl(addr->scale()));
default:
ShouldNotReachHere();
}
} else {
intptr_t addr_offset = intptr_t(addr->disp());
if (Address::offset_ok_for_immed(addr_offset, addr->scale()))
return Address(base, addr_offset, Address::lsl(addr->scale()));
else {
__ mov(tmp, addr_offset);
return Address(base, tmp, Address::lsl(addr->scale()));
}
}
return Address();
}
Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
ShouldNotReachHere();
return Address();
}
Address LIR_Assembler::as_Address(LIR_Address* addr) {
return as_Address(addr, rscratch1);
}
Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
return as_Address(addr, rscratch1); // Ouch
// FIXME: This needs to be much more clever. See x86.
}
void LIR_Assembler::osr_entry() {
offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
BlockBegin* osr_entry = compilation()->hir()->osr_entry();
ValueStack* entry_state = osr_entry->state();
int number_of_locks = entry_state->locks_size();
// we jump here if osr happens with the interpreter
// state set up to continue at the beginning of the
// loop that triggered osr - in particular, we have
// the following registers setup:
//
// r2: osr buffer
//
// build frame
ciMethod* m = compilation()->method();
__ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
// OSR buffer is
//
// locals[nlocals-1..0]
// monitors[0..number_of_locks]
//
// locals is a direct copy of the interpreter frame so in the osr buffer
// so first slot in the local array is the last local from the interpreter
// and last slot is local[0] (receiver) from the interpreter
//
// Similarly with locks. The first lock slot in the osr buffer is the nth lock
// from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
// in the interpreter frame (the method lock if a sync method)
// Initialize monitors in the compiled activation.
// r2: pointer to osr buffer
//
// All other registers are dead at this point and the locals will be
// copied into place by code emitted in the IR.
Register OSR_buf = osrBufferPointer()->as_pointer_register();
{ assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
int monitor_offset = BytesPerWord * method()->max_locals() +
(2 * BytesPerWord) * (number_of_locks - 1);
// SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
// the OSR buffer using 2 word entries: first the lock and then
// the oop.
for (int i = 0; i < number_of_locks; i++) {
int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
#ifdef ASSERT
// verify the interpreter's monitor has a non-null object
{
Label L;
__ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord));
__ cbnz(rscratch1, L);
__ stop("locked object is NULL");
__ bind(L);
}
#endif
__ ldr(r19, Address(OSR_buf, slot_offset + 0));
__ str(r19, frame_map()->address_for_monitor_lock(i));
__ ldr(r19, Address(OSR_buf, slot_offset + 1*BytesPerWord));
__ str(r19, frame_map()->address_for_monitor_object(i));
}
}
}
// inline cache check; done before the frame is built.
int LIR_Assembler::check_icache() {
Register receiver = FrameMap::receiver_opr->as_register();
Register ic_klass = IC_Klass;
int start_offset = __ offset();
__ inline_cache_check(receiver, ic_klass);
// if icache check fails, then jump to runtime routine
// Note: RECEIVER must still contain the receiver!
Label dont;
__ br(Assembler::EQ, dont);
__ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
// We align the verified entry point unless the method body
// (including its inline cache check) will fit in a single 64-byte
// icache line.
if (! method()->is_accessor() || __ offset() - start_offset > 4 * 4) {
// force alignment after the cache check.
__ align(CodeEntryAlignment);
}
__ bind(dont);
return start_offset;
}
void LIR_Assembler::clinit_barrier(ciMethod* method) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
assert(!method->holder()->is_not_initialized(), "initialization should have been started");
Label L_skip_barrier;
__ mov_metadata(rscratch2, method->holder()->constant_encoding());
__ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/);
__ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
__ bind(L_skip_barrier);
}
void LIR_Assembler::jobject2reg(jobject o, Register reg) {
if (o == NULL) {
__ mov(reg, zr);
} else {
__ movoop(reg, o, /*immediate*/true);
}
}
void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
address target = NULL;
relocInfo::relocType reloc_type = relocInfo::none;
switch (patching_id(info)) {
case PatchingStub::access_field_id:
target = Runtime1::entry_for(Runtime1::access_field_patching_id);
reloc_type = relocInfo::section_word_type;
break;
case PatchingStub::load_klass_id:
target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
reloc_type = relocInfo::metadata_type;
break;
case PatchingStub::load_mirror_id:
target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
reloc_type = relocInfo::oop_type;
break;
case PatchingStub::load_appendix_id:
target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
reloc_type = relocInfo::oop_type;
break;
default: ShouldNotReachHere();
}
__ far_call(RuntimeAddress(target));
add_call_info_here(info);
}
void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
deoptimize_trap(info);
}
// This specifies the rsp decrement needed to build the frame
int LIR_Assembler::initial_frame_size_in_bytes() const {
// if rounding, must let FrameMap know!
// The frame_map records size in slots (32bit word)
// subtract two words to account for return address and link
return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
}
int LIR_Assembler::emit_exception_handler() {
// if the last instruction is a call (typically to do a throw which
// is coming at the end after block reordering) the return address
// must still point into the code area in order to avoid assertion
// failures when searching for the corresponding bci => add a nop
// (was bug 5/14/1999 - gri)
__ nop();
// generate code for exception handler
address handler_base = __ start_a_stub(exception_handler_size());
if (handler_base == NULL) {
// not enough space left for the handler
bailout("exception handler overflow");
return -1;
}
int offset = code_offset();
// the exception oop and pc are in r0, and r3
// no other registers need to be preserved, so invalidate them
__ invalidate_registers(false, true, true, false, true, true);
// check that there is really an exception
__ verify_not_null_oop(r0);
// search an exception handler (r0: exception oop, r3: throwing pc)
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id))); __ should_not_reach_here();
guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
__ end_a_stub();
return offset;
}
// Emit the code to remove the frame from the stack in the exception
// unwind path.
int LIR_Assembler::emit_unwind_handler() {
#ifndef PRODUCT
if (CommentedAssembly) {
_masm->block_comment("Unwind handler");
}
#endif
int offset = code_offset();
// Fetch the exception from TLS and clear out exception related thread state
__ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
__ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
__ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
__ bind(_unwind_handler_entry);
__ verify_not_null_oop(r0);
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
__ mov(r19, r0); // Preserve the exception
}
// Preform needed unlocking
MonitorExitStub* stub = NULL;
if (method()->is_synchronized()) {
monitor_address(0, FrameMap::r0_opr);
stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
__ unlock_object(r5, r4, r0, *stub->entry());
__ bind(*stub->continuation());
}
if (compilation()->env()->dtrace_method_probes()) {
__ call_Unimplemented();
#if 0
__ movptr(Address(rsp, 0), rax);
__ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
#endif
}
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
__ mov(r0, r19); // Restore the exception
}
// remove the activation and dispatch to the unwind handler
__ block_comment("remove_frame and dispatch to the unwind handler");
__ remove_frame(initial_frame_size_in_bytes());
__ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
// Emit the slow path assembly
if (stub != NULL) {
stub->emit_code(this);
}
return offset;
}
int LIR_Assembler::emit_deopt_handler() {
// if the last instruction is a call (typically to do a throw which
// is coming at the end after block reordering) the return address
// must still point into the code area in order to avoid assertion
// failures when searching for the corresponding bci => add a nop
// (was bug 5/14/1999 - gri)
__ nop();
// generate code for exception handler
address handler_base = __ start_a_stub(deopt_handler_size());
if (handler_base == NULL) {
// not enough space left for the handler
bailout("deopt handler overflow");
return -1;
}
int offset = code_offset();
__ adr(lr, pc());
__ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
__ end_a_stub();
return offset;
}
void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
_masm->code_section()->relocate(adr, relocInfo::poll_type);
int pc_offset = code_offset();
flush_debug_info(pc_offset);
info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
if (info->exception_handlers() != NULL) {
compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
}
}
void LIR_Assembler::return_op(LIR_Opr result) {
assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
// Pop the stack before the safepoint code
__ remove_frame(initial_frame_size_in_bytes());
if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
__ reserved_stack_check();
}
address polling_page(os::get_polling_page());
__ read_polling_page(rscratch1, polling_page, relocInfo::poll_return_type);
__ ret(lr);
}
int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
address polling_page(os::get_polling_page());
guarantee(info != NULL, "Shouldn't be NULL");
assert(os::is_poll_address(polling_page), "should be");
__ get_polling_page(rscratch1, polling_page, relocInfo::poll_type);
add_debug_info_for_branch(info); // This isn't just debug info:
// it's the oop map
__ read_polling_page(rscratch1, relocInfo::poll_type);
return __ offset();
}
void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
if (from_reg == r31_sp)
from_reg = sp;
if (to_reg == r31_sp)
to_reg = sp;
__ mov(to_reg, from_reg);
}
void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
assert(src->is_constant(), "should not call otherwise");
assert(dest->is_register(), "should not call otherwise");
LIR_Const* c = src->as_constant_ptr();
switch (c->type()) {
case T_INT: {
assert(patch_code == lir_patch_none, "no patching handled here");
__ movw(dest->as_register(), c->as_jint());
break;
}
case T_ADDRESS: {
assert(patch_code == lir_patch_none, "no patching handled here");
__ mov(dest->as_register(), c->as_jint());
break;
}
case T_LONG: {
assert(patch_code == lir_patch_none, "no patching handled here");
__ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
break;
}
case T_OBJECT: {
if (patch_code == lir_patch_none) {
jobject2reg(c->as_jobject(), dest->as_register());
} else {
jobject2reg_with_patching(dest->as_register(), info);
}
break;
}
case T_METADATA: {
if (patch_code != lir_patch_none) {
klass2reg_with_patching(dest->as_register(), info);
} else {
__ mov_metadata(dest->as_register(), c->as_metadata());
}
break;
}
case T_FLOAT: {
if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
__ fmovs(dest->as_float_reg(), (c->as_jfloat()));
} else {
__ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
__ ldrs(dest->as_float_reg(), Address(rscratch1));
}
break;
}
case T_DOUBLE: {
if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
__ fmovd(dest->as_double_reg(), (c->as_jdouble()));
} else {
__ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
__ ldrd(dest->as_double_reg(), Address(rscratch1));
}
break;
}
default:
ShouldNotReachHere();
}
}
void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
LIR_Const* c = src->as_constant_ptr();
switch (c->type()) {
case T_OBJECT:
{
if (! c->as_jobject())
__ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
else {
const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL);
reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
}
}
break;
case T_ADDRESS:
{
const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL);
reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
}
case T_INT:
case T_FLOAT:
{
Register reg = zr;
if (c->as_jint_bits() == 0)
__ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
else {
__ movw(rscratch1, c->as_jint_bits());
__ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
}
}
break;
case T_LONG:
case T_DOUBLE:
{
Register reg = zr;
if (c->as_jlong_bits() == 0)
__ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
lo_word_offset_in_bytes));
else {
__ mov(rscratch1, (intptr_t)c->as_jlong_bits());
__ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
lo_word_offset_in_bytes));
}
}
break;
default:
ShouldNotReachHere();
}
}
void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
assert(src->is_constant(), "should not call otherwise");
LIR_Const* c = src->as_constant_ptr();
LIR_Address* to_addr = dest->as_address_ptr();
void (Assembler::* insn)(Register Rt, const Address &adr);
switch (type) {
case T_ADDRESS:
assert(c->as_jint() == 0, "should be");
insn = &Assembler::str;
break;
case T_LONG:
assert(c->as_jlong() == 0, "should be");
insn = &Assembler::str;
break;
case T_INT:
assert(c->as_jint() == 0, "should be");
insn = &Assembler::strw;
break;
case T_OBJECT:
case T_ARRAY:
assert(c->as_jobject() == 0, "should be");
if (UseCompressedOops && !wide) {
insn = &Assembler::strw;
} else {
insn = &Assembler::str;
}
break;
case T_CHAR:
case T_SHORT:
assert(c->as_jint() == 0, "should be");
insn = &Assembler::strh;
break;
case T_BOOLEAN:
case T_BYTE:
assert(c->as_jint() == 0, "should be");
insn = &Assembler::strb;
break;
default:
ShouldNotReachHere();
insn = &Assembler::str; // unreachable
}
if (info) add_debug_info_for_null_check_here(info);
(_masm->*insn)(zr, as_Address(to_addr, rscratch1));
}
void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
assert(src->is_register(), "should not call otherwise");
assert(dest->is_register(), "should not call otherwise");
// move between cpu-registers
if (dest->is_single_cpu()) {
if (src->type() == T_LONG) {
// Can do LONG -> OBJECT
move_regs(src->as_register_lo(), dest->as_register());
return;
}
assert(src->is_single_cpu(), "must match");
if (src->type() == T_OBJECT) {
__ verify_oop(src->as_register());
}
move_regs(src->as_register(), dest->as_register());
} else if (dest->is_double_cpu()) {
if (is_reference_type(src->type())) {
// Surprising to me but we can see move of a long to t_object
__ verify_oop(src->as_register());
move_regs(src->as_register(), dest->as_register_lo());
return;
}
assert(src->is_double_cpu(), "must match");
Register f_lo = src->as_register_lo();
Register f_hi = src->as_register_hi();
Register t_lo = dest->as_register_lo();
Register t_hi = dest->as_register_hi();
assert(f_hi == f_lo, "must be same");
assert(t_hi == t_lo, "must be same");
move_regs(f_lo, t_lo);
} else if (dest->is_single_fpu()) {
__ fmovs(dest->as_float_reg(), src->as_float_reg());
} else if (dest->is_double_fpu()) {
__ fmovd(dest->as_double_reg(), src->as_double_reg());
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
if (src->is_single_cpu()) {
if (is_reference_type(type)) {
__ str(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix()));
__ verify_oop(src->as_register());
} else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) {
__ str(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix()));
} else {
__ strw(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix()));
}
} else if (src->is_double_cpu()) {
Address dest_addr_LO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
__ str(src->as_register_lo(), dest_addr_LO);
} else if (src->is_single_fpu()) {
Address dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
__ strs(src->as_float_reg(), dest_addr);
} else if (src->is_double_fpu()) {
Address dest_addr = frame_map()->address_for_slot(dest->double_stack_ix());
__ strd(src->as_double_reg(), dest_addr);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
LIR_Address* to_addr = dest->as_address_ptr();
PatchingStub* patch = NULL;
Register compressed_src = rscratch1;
if (patch_code != lir_patch_none) {
deoptimize_trap(info);
return;
}
if (is_reference_type(type)) {
__ verify_oop(src->as_register());
if (UseCompressedOops && !wide) {
__ encode_heap_oop(compressed_src, src->as_register());
} else {
compressed_src = src->as_register();
}
}
int null_check_here = code_offset();
switch (type) {
case T_FLOAT: {
__ strs(src->as_float_reg(), as_Address(to_addr));
break;
}
case T_DOUBLE: {
__ strd(src->as_double_reg(), as_Address(to_addr));
break;
}
case T_ARRAY: // fall through
case T_OBJECT: // fall through
if (UseCompressedOops && !wide) {
__ strw(compressed_src, as_Address(to_addr, rscratch2));
} else {
__ str(compressed_src, as_Address(to_addr));
}
break;
case T_METADATA:
// We get here to store a method pointer to the stack to pass to
// a dtrace runtime call. This can't work on 64 bit with
// compressed klass ptrs: T_METADATA can be a compressed klass
// ptr or a 64 bit method pointer.
ShouldNotReachHere();
__ str(src->as_register(), as_Address(to_addr));
break;
case T_ADDRESS:
__ str(src->as_register(), as_Address(to_addr));
break;
case T_INT:
__ strw(src->as_register(), as_Address(to_addr));
break;
case T_LONG: {
__ str(src->as_register_lo(), as_Address_lo(to_addr));
break;
}
case T_BYTE: // fall through
case T_BOOLEAN: {
__ strb(src->as_register(), as_Address(to_addr));
break;
}
case T_CHAR: // fall through
case T_SHORT:
__ strh(src->as_register(), as_Address(to_addr));
break;
default:
ShouldNotReachHere();
}
if (info != NULL) {
add_debug_info_for_null_check(null_check_here, info);
}
}
void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
assert(src->is_stack(), "should not call otherwise");
assert(dest->is_register(), "should not call otherwise");
if (dest->is_single_cpu()) {
if (is_reference_type(type)) {
__ ldr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
__ verify_oop(dest->as_register());
} else if (type == T_METADATA || type == T_ADDRESS) {
__ ldr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
} else {
__ ldrw(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
}
} else if (dest->is_double_cpu()) {
Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
__ ldr(dest->as_register_lo(), src_addr_LO);
} else if (dest->is_single_fpu()) {
Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
__ ldrs(dest->as_float_reg(), src_addr);
} else if (dest->is_double_fpu()) {
Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
__ ldrd(dest->as_double_reg(), src_addr);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
address target = NULL;
relocInfo::relocType reloc_type = relocInfo::none;
switch (patching_id(info)) {
case PatchingStub::access_field_id:
target = Runtime1::entry_for(Runtime1::access_field_patching_id);
reloc_type = relocInfo::section_word_type;
break;
case PatchingStub::load_klass_id:
target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
reloc_type = relocInfo::metadata_type;
break;
case PatchingStub::load_mirror_id:
target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
reloc_type = relocInfo::oop_type;
break;
case PatchingStub::load_appendix_id:
target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
reloc_type = relocInfo::oop_type;
break;
default: ShouldNotReachHere();
}
__ far_call(RuntimeAddress(target));
add_call_info_here(info);
}
void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
LIR_Opr temp;
if (type == T_LONG || type == T_DOUBLE)
temp = FrameMap::rscratch1_long_opr;
else
temp = FrameMap::rscratch1_opr;
stack2reg(src, temp, src->type());
reg2stack(temp, dest, dest->type(), false);
}
void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
LIR_Address* addr = src->as_address_ptr();
LIR_Address* from_addr = src->as_address_ptr();
if (addr->base()->type() == T_OBJECT) {
__ verify_oop(addr->base()->as_pointer_register());
}
if (patch_code != lir_patch_none) {
deoptimize_trap(info);
return;
}
if (info != NULL) {
add_debug_info_for_null_check_here(info);
}
int null_check_here = code_offset();
switch (type) {
case T_FLOAT: {
__ ldrs(dest->as_float_reg(), as_Address(from_addr));
break;
}
case T_DOUBLE: {
__ ldrd(dest->as_double_reg(), as_Address(from_addr));
break;
}
case T_ARRAY: // fall through
case T_OBJECT: // fall through
if (UseCompressedOops && !wide) {
__ ldrw(dest->as_register(), as_Address(from_addr));
} else {
__ ldr(dest->as_register(), as_Address(from_addr));
}
break;
case T_METADATA:
// We get here to store a method pointer to the stack to pass to
// a dtrace runtime call. This can't work on 64 bit with
// compressed klass ptrs: T_METADATA can be a compressed klass
// ptr or a 64 bit method pointer.
ShouldNotReachHere();
__ ldr(dest->as_register(), as_Address(from_addr));
break;
case T_ADDRESS:
// FIXME: OMG this is a horrible kludge. Any offset from an
// address that matches klass_offset_in_bytes() will be loaded
// as a word, not a long.
if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
__ ldrw(dest->as_register(), as_Address(from_addr));
} else {
__ ldr(dest->as_register(), as_Address(from_addr));
}
break;
case T_INT:
__ ldrw(dest->as_register(), as_Address(from_addr));
break;
case T_LONG: {
__ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
break;
}
case T_BYTE:
__ ldrsb(dest->as_register(), as_Address(from_addr));
break;
case T_BOOLEAN: {
__ ldrb(dest->as_register(), as_Address(from_addr));
break;
}
case T_CHAR:
__ ldrh(dest->as_register(), as_Address(from_addr));
break;
case T_SHORT:
__ ldrsh(dest->as_register(), as_Address(from_addr));
break;
default:
ShouldNotReachHere();
}
if (is_reference_type(type)) {
if (UseCompressedOops && !wide) {
__ decode_heap_oop(dest->as_register());
}
if (!UseZGC) {
// Load barrier has not yet been applied, so ZGC can't verify the oop here
__ verify_oop(dest->as_register());
}
} else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
if (UseCompressedClassPointers) {
__ decode_klass_not_null(dest->as_register());
}
}
}
int LIR_Assembler::array_element_size(BasicType type) const {
int elem_size = type2aelembytes(type);
return exact_log2(elem_size);
}
void LIR_Assembler::emit_op3(LIR_Op3* op) {
switch (op->code()) {
case lir_idiv:
case lir_irem:
arithmetic_idiv(op->code(),
op->in_opr1(),
op->in_opr2(),
op->in_opr3(),
op->result_opr(),
op->info());
break;
case lir_fmad:
__ fmaddd(op->result_opr()->as_double_reg(),
op->in_opr1()->as_double_reg(),
op->in_opr2()->as_double_reg(),
op->in_opr3()->as_double_reg());
break;
case lir_fmaf:
__ fmadds(op->result_opr()->as_float_reg(),
op->in_opr1()->as_float_reg(),
op->in_opr2()->as_float_reg(),
op->in_opr3()->as_float_reg());
break;
default: ShouldNotReachHere(); break;
}
}
void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
#ifdef ASSERT
assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
if (op->block() != NULL) _branch_target_blocks.append(op->block());
if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
#endif
if (op->cond() == lir_cond_always) {
if (op->info() != NULL) add_debug_info_for_branch(op->info());
__ b(*(op->label()));
} else {
Assembler::Condition acond;
if (op->code() == lir_cond_float_branch) {
bool is_unordered = (op->ublock() == op->block());
// Assembler::EQ does not permit unordered branches, so we add
// another branch here. Likewise, Assembler::NE does not permit
// ordered branches.
if ((is_unordered && op->cond() == lir_cond_equal)
|| (!is_unordered && op->cond() == lir_cond_notEqual))
__ br(Assembler::VS, *(op->ublock()->label()));
switch(op->cond()) {
case lir_cond_equal: acond = Assembler::EQ; break;
case lir_cond_notEqual: acond = Assembler::NE; break;
case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
default: ShouldNotReachHere();
acond = Assembler::EQ; // unreachable
}
} else {
switch (op->cond()) {
case lir_cond_equal: acond = Assembler::EQ; break;
case lir_cond_notEqual: acond = Assembler::NE; break;
case lir_cond_less: acond = Assembler::LT; break;
case lir_cond_lessEqual: acond = Assembler::LE; break;
case lir_cond_greaterEqual: acond = Assembler::GE; break;
case lir_cond_greater: acond = Assembler::GT; break;
case lir_cond_belowEqual: acond = Assembler::LS; break;
case lir_cond_aboveEqual: acond = Assembler::HS; break;
default: ShouldNotReachHere();
acond = Assembler::EQ; // unreachable
}
}
__ br(acond,*(op->label()));
}
}
void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
LIR_Opr src = op->in_opr();
LIR_Opr dest = op->result_opr();
switch (op->bytecode()) {
case Bytecodes::_i2f:
{
__ scvtfws(dest->as_float_reg(), src->as_register());
break;
}
case Bytecodes::_i2d:
{
__ scvtfwd(dest->as_double_reg(), src->as_register());
break;
}
case Bytecodes::_l2d:
{
__ scvtfd(dest->as_double_reg(), src->as_register_lo());
break;
}
case Bytecodes::_l2f:
{
__ scvtfs(dest->as_float_reg(), src->as_register_lo());
break;
}
case Bytecodes::_f2d:
{
__ fcvts(dest->as_double_reg(), src->as_float_reg());
break;
}
case Bytecodes::_d2f:
{
__ fcvtd(dest->as_float_reg(), src->as_double_reg());
break;
}
case Bytecodes::_i2c:
{
__ ubfx(dest->as_register(), src->as_register(), 0, 16);
break;
}
case Bytecodes::_i2l:
{
__ sxtw(dest->as_register_lo(), src->as_register());
break;
}
case Bytecodes::_i2s:
{
__ sxth(dest->as_register(), src->as_register());
break;
}
case Bytecodes::_i2b:
{
__ sxtb(dest->as_register(), src->as_register());
break;
}
case Bytecodes::_l2i:
{
_masm->block_comment("FIXME: This could be a no-op");
__ uxtw(dest->as_register(), src->as_register_lo());
break;
}
case Bytecodes::_d2l:
{
__ fcvtzd(dest->as_register_lo(), src->as_double_reg());
break;
}
case Bytecodes::_f2i:
{
__ fcvtzsw(dest->as_register(), src->as_float_reg());
break;
}
case Bytecodes::_f2l:
{
__ fcvtzs(dest->as_register_lo(), src->as_float_reg());
break;
}
case Bytecodes::_d2i:
{
__ fcvtzdw(dest->as_register(), src->as_double_reg());
break;
}
default: ShouldNotReachHere();
}
}
void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
if (op->init_check()) {
__ ldrb(rscratch1, Address(op->klass()->as_register(),
InstanceKlass::init_state_offset()));
__ cmpw(rscratch1, InstanceKlass::fully_initialized);
add_debug_info_for_null_check_here(op->stub()->info());
__ br(Assembler::NE, *op->stub()->entry());
}
__ allocate_object(op->obj()->as_register(),
op->tmp1()->as_register(),
op->tmp2()->as_register(),
op->header_size(),
op->object_size(),
op->klass()->as_register(),
*op->stub()->entry());
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
Register len = op->len()->as_register();
__ uxtw(len, len);
if (UseSlowPath ||
(!UseFastNewObjectArray && is_reference_type(op->type())) ||
(!UseFastNewTypeArray && !is_reference_type(op->type()))) {
__ b(*op->stub()->entry());
} else {
Register tmp1 = op->tmp1()->as_register();
Register tmp2 = op->tmp2()->as_register();
Register tmp3 = op->tmp3()->as_register();
if (len == tmp1) {
tmp1 = tmp3;
} else if (len == tmp2) {
tmp2 = tmp3;
} else if (len == tmp3) {
// everything is ok
} else {
__ mov(tmp3, len);
}
__ allocate_array(op->obj()->as_register(),
len,
tmp1,
tmp2,
arrayOopDesc::header_size(op->type()),
array_element_size(op->type()),
op->klass()->as_register(),
*op->stub()->entry());
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::type_profile_helper(Register mdo,
ciMethodData *md, ciProfileData *data,
Register recv, Label* update_done) {
for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
Label next_test;
// See if the receiver is receiver[n].
__ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
__ ldr(rscratch1, Address(rscratch2));
__ cmp(recv, rscratch1);
__ br(Assembler::NE, next_test);
Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
__ addptr(data_addr, DataLayout::counter_increment);
__ b(*update_done);
__ bind(next_test);
}
// Didn't find receiver; find next empty slot and fill it in
for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
Label next_test;
__ lea(rscratch2,
Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
Address recv_addr(rscratch2);
__ ldr(rscratch1, recv_addr);
__ cbnz(rscratch1, next_test);
__ str(recv, recv_addr);
__ mov(rscratch1, DataLayout::counter_increment);
__ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
__ str(rscratch1, Address(rscratch2));
__ b(*update_done);
__ bind(next_test);
}
}
void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
// we always need a stub for the failure case.
CodeStub* stub = op->stub();
Register obj = op->object()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register dst = op->result_opr()->as_register();
ciKlass* k = op->klass();
Register Rtmp1 = noreg;
// check if it needs to be profiled
ciMethodData* md;
ciProfileData* data;
const bool should_profile = op->should_profile();
if (should_profile) {
ciMethod* method = op->profiled_method();
assert(method != NULL, "Should have method");
int bci = op->profiled_bci();
md = method->method_data_or_null();
assert(md != NULL, "Sanity");
data = md->bci_to_data(bci);
assert(data != NULL, "need data for type check");
assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
}
Label profile_cast_success, profile_cast_failure;
Label *success_target = should_profile ? &profile_cast_success : success;
Label *failure_target = should_profile ? &profile_cast_failure : failure;
if (obj == k_RInfo) {
k_RInfo = dst;
} else if (obj == klass_RInfo) {
klass_RInfo = dst;
}
if (k->is_loaded() && !UseCompressedClassPointers) {
select_different_registers(obj, dst, k_RInfo, klass_RInfo);
} else {
Rtmp1 = op->tmp3()->as_register();
select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
}
assert_different_registers(obj, k_RInfo, klass_RInfo);
if (should_profile) {
Label not_null;
__ cbnz(obj, not_null);
// Object is null; update MDO and exit
Register mdo = klass_RInfo;
__ mov_metadata(mdo, md->constant_encoding());
Address data_addr
= __ form_address(rscratch2, mdo,
md->byte_offset_of_slot(data, DataLayout::flags_offset()),
0);
__ ldrb(rscratch1, data_addr);
__ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
__ strb(rscratch1, data_addr);
__ b(*obj_is_null);
__ bind(not_null);
} else {
__ cbz(obj, *obj_is_null);
}
if (!k->is_loaded()) {
klass2reg_with_patching(k_RInfo, op->info_for_patch());
} else {
__ mov_metadata(k_RInfo, k->constant_encoding());
}
__ verify_oop(obj);
if (op->fast_check()) {
// get object class
// not a safepoint as obj null check happens earlier
__ load_klass(rscratch1, obj);
__ cmp( rscratch1, k_RInfo);
__ br(Assembler::NE, *failure_target);
// successful cast, fall through to profile or jump
} else {
// get object class
// not a safepoint as obj null check happens earlier
__ load_klass(klass_RInfo, obj);
if (k->is_loaded()) {
// See if we get an immediate positive hit
__ ldr(rscratch1, Address(klass_RInfo, long(k->super_check_offset())));
__ cmp(k_RInfo, rscratch1);
if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
__ br(Assembler::NE, *failure_target);
// successful cast, fall through to profile or jump
} else {
// See if we get an immediate positive hit
__ br(Assembler::EQ, *success_target);
// check for self
__ cmp(klass_RInfo, k_RInfo);
__ br(Assembler::EQ, *success_target);
__ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
__ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
// result is a boolean
__ cbzw(klass_RInfo, *failure_target);
// successful cast, fall through to profile or jump
}
} else {
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
__ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
__ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
// result is a boolean
__ cbz(k_RInfo, *failure_target);
// successful cast, fall through to profile or jump
}
}
if (should_profile) {
Register mdo = klass_RInfo, recv = k_RInfo;
__ bind(profile_cast_success);
__ mov_metadata(mdo, md->constant_encoding());
__ load_klass(recv, obj);
Label update_done;
type_profile_helper(mdo, md, data, recv, success);
__ b(*success);
__ bind(profile_cast_failure);
__ mov_metadata(mdo, md->constant_encoding());
Address counter_addr
= __ form_address(rscratch2, mdo,
md->byte_offset_of_slot(data, CounterData::count_offset()),
0);
__ ldr(rscratch1, counter_addr);
__ sub(rscratch1, rscratch1, DataLayout::counter_increment);
__ str(rscratch1, counter_addr);
__ b(*failure);
}
__ b(*success);
}
void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
const bool should_profile = op->should_profile();
LIR_Code code = op->code();
if (code == lir_store_check) {
Register value = op->object()->as_register();
Register array = op->array()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register Rtmp1 = op->tmp3()->as_register();
CodeStub* stub = op->stub();
// check if it needs to be profiled
ciMethodData* md;
ciProfileData* data;
if (should_profile) {
ciMethod* method = op->profiled_method();
assert(method != NULL, "Should have method");
int bci = op->profiled_bci();
md = method->method_data_or_null();
assert(md != NULL, "Sanity");
data = md->bci_to_data(bci);
assert(data != NULL, "need data for type check");
assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
}
Label profile_cast_success, profile_cast_failure, done;
Label *success_target = should_profile ? &profile_cast_success : &done;
Label *failure_target = should_profile ? &profile_cast_failure : stub->entry();
if (should_profile) {
Label not_null;
__ cbnz(value, not_null);
// Object is null; update MDO and exit
Register mdo = klass_RInfo;
__ mov_metadata(mdo, md->constant_encoding());
Address data_addr
= __ form_address(rscratch2, mdo,
md->byte_offset_of_slot(data, DataLayout::flags_offset()),
0);
__ ldrb(rscratch1, data_addr);
__ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
__ strb(rscratch1, data_addr);
__ b(done);
__ bind(not_null);
} else {
__ cbz(value, done);
}
add_debug_info_for_null_check_here(op->info_for_exception());
__ load_klass(k_RInfo, array);
__ load_klass(klass_RInfo, value);
// get instance klass (it's already uncompressed)
__ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
__ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
__ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
// result is a boolean
__ cbzw(k_RInfo, *failure_target);
// fall through to the success case
if (should_profile) {
Register mdo = klass_RInfo, recv = k_RInfo;
__ bind(profile_cast_success);
__ mov_metadata(mdo, md->constant_encoding());
__ load_klass(recv, value);
Label update_done;
type_profile_helper(mdo, md, data, recv, &done);
__ b(done);
__ bind(profile_cast_failure);
__ mov_metadata(mdo, md->constant_encoding());
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
__ lea(rscratch2, counter_addr);
__ ldr(rscratch1, Address(rscratch2));
__ sub(rscratch1, rscratch1, DataLayout::counter_increment);
__ str(rscratch1, Address(rscratch2));
__ b(*stub->entry());
}
__ bind(done);
} else if (code == lir_checkcast) {
Register obj = op->object()->as_register();
Register dst = op->result_opr()->as_register();
Label success;
emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
__ bind(success);
if (dst != obj) {
__ mov(dst, obj);
}
} else if (code == lir_instanceof) {
Register obj = op->object()->as_register();
Register dst = op->result_opr()->as_register();
Label success, failure, done;
emit_typecheck_helper(op, &success, &failure, &failure);
__ bind(failure);
__ mov(dst, zr);
__ b(done);
__ bind(success);
__ mov(dst, 1);
__ bind(done);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
__ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
__ cset(rscratch1, Assembler::NE);
__ membar(__ AnyAny);
}
void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
__ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
__ cset(rscratch1, Assembler::NE);
__ membar(__ AnyAny);
}
void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
assert(VM_Version::supports_cx8(), "wrong machine");
Register addr;
if (op->addr()->is_register()) {
addr = as_reg(op->addr());
} else {
assert(op->addr()->is_address(), "what else?");
LIR_Address* addr_ptr = op->addr()->as_address_ptr();
assert(addr_ptr->disp() == 0, "need 0 disp");
assert(addr_ptr->index() == LIR_OprDesc::illegalOpr(), "need 0 index");
addr = as_reg(addr_ptr->base());
}
Register newval = as_reg(op->new_value());
Register cmpval = as_reg(op->cmp_value());
if (op->code() == lir_cas_obj) {
if (UseCompressedOops) {
Register t1 = op->tmp1()->as_register();
assert(op->tmp1()->is_valid(), "must be");
__ encode_heap_oop(t1, cmpval);
cmpval = t1;
__ encode_heap_oop(rscratch2, newval);
newval = rscratch2;
casw(addr, newval, cmpval);
} else {
casl(addr, newval, cmpval);
}
} else if (op->code() == lir_cas_int) {
casw(addr, newval, cmpval);
} else {
casl(addr, newval, cmpval);
}
}
void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
Assembler::Condition acond, ncond;
switch (condition) {
case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break;
case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break;
case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break;
case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break;
case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break;
case lir_cond_belowEqual:
case lir_cond_aboveEqual:
default: ShouldNotReachHere();
acond = Assembler::EQ; ncond = Assembler::NE; // unreachable
}
assert(result->is_single_cpu() || result->is_double_cpu(),
"expect single register for result");
if (opr1->is_constant() && opr2->is_constant()
&& opr1->type() == T_INT && opr2->type() == T_INT) {
jint val1 = opr1->as_jint();
jint val2 = opr2->as_jint();
if (val1 == 0 && val2 == 1) {
__ cset(result->as_register(), ncond);
return;
} else if (val1 == 1 && val2 == 0) {
__ cset(result->as_register(), acond);
return;
}
}
if (opr1->is_constant() && opr2->is_constant()
&& opr1->type() == T_LONG && opr2->type() == T_LONG) {
jlong val1 = opr1->as_jlong();
jlong val2 = opr2->as_jlong();
if (val1 == 0 && val2 == 1) {
__ cset(result->as_register_lo(), ncond);
return;
} else if (val1 == 1 && val2 == 0) {
__ cset(result->as_register_lo(), acond);
return;
}
}
if (opr1->is_stack()) {
stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
opr1 = FrameMap::rscratch1_opr;
} else if (opr1->is_constant()) {
LIR_Opr tmp
= opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
const2reg(opr1, tmp, lir_patch_none, NULL);
opr1 = tmp;
}
if (opr2->is_stack()) {
stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
opr2 = FrameMap::rscratch2_opr;
} else if (opr2->is_constant()) {
LIR_Opr tmp
= opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
const2reg(opr2, tmp, lir_patch_none, NULL);
opr2 = tmp;
}
if (result->type() == T_LONG)
__ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
else
__ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
}
void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
if (left->is_single_cpu()) {
Register lreg = left->as_register();
Register dreg = as_reg(dest);
if (right->is_single_cpu()) {
// cpu register - cpu register
assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
"should be");
Register rreg = right->as_register();
switch (code) {
case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
default: ShouldNotReachHere();
}
} else if (right->is_double_cpu()) {
Register rreg = right->as_register_lo();
// single_cpu + double_cpu: can happen with obj+long
assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
switch (code) {
case lir_add: __ add(dreg, lreg, rreg); break;
case lir_sub: __ sub(dreg, lreg, rreg); break;
default: ShouldNotReachHere();
}
} else if (right->is_constant()) {
// cpu register - constant
jlong c;
// FIXME. This is fugly: we really need to factor all this logic.
switch(right->type()) {
case T_LONG:
c = right->as_constant_ptr()->as_jlong();
break;
case T_INT:
case T_ADDRESS:
c = right->as_constant_ptr()->as_jint();
break;
default:
ShouldNotReachHere();
c = 0; // unreachable
break;
}
assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
if (c == 0 && dreg == lreg) {
COMMENT("effective nop elided");
return;
}
switch(left->type()) {
case T_INT:
switch (code) {
case lir_add: __ addw(dreg, lreg, c); break;
case lir_sub: __ subw(dreg, lreg, c); break;
default: ShouldNotReachHere();
}
break;
case T_OBJECT:
case T_ADDRESS:
switch (code) {
case lir_add: __ add(dreg, lreg, c); break;
case lir_sub: __ sub(dreg, lreg, c); break;
default: ShouldNotReachHere();
}
break;
default:
ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
} else if (left->is_double_cpu()) {
Register lreg_lo = left->as_register_lo();
if (right->is_double_cpu()) {
// cpu register - cpu register
Register rreg_lo = right->as_register_lo();
switch (code) {
case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
default:
ShouldNotReachHere();
}
} else if (right->is_constant()) {
jlong c = right->as_constant_ptr()->as_jlong();
Register dreg = as_reg(dest);
switch (code) {
case lir_add:
case lir_sub:
if (c == 0 && dreg == lreg_lo) {
COMMENT("effective nop elided");
return;
}
code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c);
break;
case lir_div:
assert(c > 0 && is_power_of_2_long(c), "divisor must be power-of-2 constant");
if (c == 1) {
// move lreg_lo to dreg if divisor is 1
__ mov(dreg, lreg_lo);
} else {
unsigned int shift = exact_log2_long(c);
// use rscratch1 as intermediate result register
__ asr(rscratch1, lreg_lo, 63);
__ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift);
__ asr(dreg, rscratch1, shift);
}
break;
case lir_rem:
assert(c > 0 && is_power_of_2_long(c), "divisor must be power-of-2 constant");
if (c == 1) {
// move 0 to dreg if divisor is 1
__ mov(dreg, zr);
} else {
// use rscratch1 as intermediate result register
__ negs(rscratch1, lreg_lo);
__ andr(dreg, lreg_lo, c - 1);
__ andr(rscratch1, rscratch1, c - 1);
__ csneg(dreg, dreg, rscratch1, Assembler::MI);
}
break;
default:
ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
} else if (left->is_single_fpu()) {
assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
switch (code) {
case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
case lir_div_strictfp: // fall through
case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
default:
ShouldNotReachHere();
}
} else if (left->is_double_fpu()) {
if (right->is_double_fpu()) {
// fpu register - fpu register
switch (code) {
case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
case lir_div_strictfp: // fall through
case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
default:
ShouldNotReachHere();
}
} else {
if (right->is_constant()) {
ShouldNotReachHere();
}
ShouldNotReachHere();
}
} else if (left->is_single_stack() || left->is_address()) {
assert(left == dest, "left and dest must be equal");
ShouldNotReachHere();
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
switch(code) {
case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
default : ShouldNotReachHere();
}
}
void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
Register Rleft = left->is_single_cpu() ? left->as_register() :
left->as_register_lo();
if (dst->is_single_cpu()) {
Register Rdst = dst->as_register();
if (right->is_constant()) {
switch (code) {
case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break;
case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
default: ShouldNotReachHere(); break;
}
} else {
Register Rright = right->is_single_cpu() ? right->as_register() :
right->as_register_lo();
switch (code) {
case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break;
case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
default: ShouldNotReachHere(); break;
}
}
} else {
Register Rdst = dst->as_register_lo();
if (right->is_constant()) {
switch (code) {
case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break;
case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
default: ShouldNotReachHere(); break;
}
} else {
Register Rright = right->is_single_cpu() ? right->as_register() :
right->as_register_lo();
switch (code) {
case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
case lir_logic_or: __ orr (Rdst, Rleft, Rright); break;
case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
default: ShouldNotReachHere(); break;
}
}
}
}
void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) {
// opcode check
assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem");
bool is_irem = (code == lir_irem);
// operand check
assert(left->is_single_cpu(), "left must be register");
assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
assert(result->is_single_cpu(), "result must be register");
Register lreg = left->as_register();
Register dreg = result->as_register();
// power-of-2 constant check and codegen
if (right->is_constant()) {
int c = right->as_constant_ptr()->as_jint();
assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
if (is_irem) {
if (c == 1) {
// move 0 to dreg if divisor is 1
__ movw(dreg, zr);
} else {
// use rscratch1 as intermediate result register
__ negsw(rscratch1, lreg);
__ andw(dreg, lreg, c - 1);
__ andw(rscratch1, rscratch1, c - 1);
__ csnegw(dreg, dreg, rscratch1, Assembler::MI);
}
} else {
if (c == 1) {
// move lreg to dreg if divisor is 1
__ movw(dreg, lreg);
} else {
unsigned int shift = exact_log2(c);
// use rscratch1 as intermediate result register
__ asrw(rscratch1, lreg, 31);
__ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift);
__ asrw(dreg, rscratch1, shift);
}
}
} else {
Register rreg = right->as_register();
__ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1);
}
}
void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
if (opr1->is_constant() && opr2->is_single_cpu()) {
// tableswitch
Register reg = as_reg(opr2);
struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
__ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
} else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
Register reg1 = as_reg(opr1);
if (opr2->is_single_cpu()) {
// cpu register - cpu register
Register reg2 = opr2->as_register();
if (is_reference_type(opr1->type())) {
__ cmpoop(reg1, reg2);
} else {
assert(!is_reference_type(opr2->type()), "cmp int, oop?");
__ cmpw(reg1, reg2);
}
return;
}
if (opr2->is_double_cpu()) {
// cpu register - cpu register
Register reg2 = opr2->as_register_lo();
__ cmp(reg1, reg2);
return;
}
if (opr2->is_constant()) {
bool is_32bit = false; // width of register operand
jlong imm;
switch(opr2->type()) {
case T_INT:
imm = opr2->as_constant_ptr()->as_jint();
is_32bit = true;
break;
case T_LONG:
imm = opr2->as_constant_ptr()->as_jlong();
break;
case T_ADDRESS:
imm = opr2->as_constant_ptr()->as_jint();
break;
case T_METADATA:
imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata());
break;
case T_OBJECT:
case T_ARRAY:
jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1);
__ cmpoop(reg1, rscratch1);
return;
default:
ShouldNotReachHere();
imm = 0; // unreachable
break;
}
if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
if (is_32bit)
__ cmpw(reg1, imm);
else
__ subs(zr, reg1, imm);
return;
} else {
__ mov(rscratch1, imm);
if (is_32bit)
__ cmpw(reg1, rscratch1);
else
__ cmp(reg1, rscratch1);
return;
}
} else
ShouldNotReachHere();
} else if (opr1->is_single_fpu()) {
FloatRegister reg1 = opr1->as_float_reg();
assert(opr2->is_single_fpu(), "expect single float register");
FloatRegister reg2 = opr2->as_float_reg();
__ fcmps(reg1, reg2);
} else if (opr1->is_double_fpu()) {
FloatRegister reg1 = opr1->as_double_reg();
assert(opr2->is_double_fpu(), "expect double float register");
FloatRegister reg2 = opr2->as_double_reg();
__ fcmpd(reg1, reg2);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
bool is_unordered_less = (code == lir_ucmp_fd2i);
if (left->is_single_fpu()) {
__ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
} else if (left->is_double_fpu()) {
__ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
} else {
ShouldNotReachHere();
}
} else if (code == lir_cmp_l2i) {
Label done;
__ cmp(left->as_register_lo(), right->as_register_lo());
__ mov(dst->as_register(), (u_int64_t)-1L);
__ br(Assembler::LT, done);
__ csinc(dst->as_register(), zr, zr, Assembler::EQ);
__ bind(done);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::align_call(LIR_Code code) { }
void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
address call = __ trampoline_call(Address(op->addr(), rtype));
if (call == NULL) {
bailout("trampoline stub overflow");
return;
}
add_call_info(code_offset(), op->info());
}
void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
address call = __ ic_call(op->addr());
if (call == NULL) {
bailout("trampoline stub overflow");
return;
}
add_call_info(code_offset(), op->info());
}
/* Currently, vtable-dispatch is only enabled for sparc platforms */
void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
ShouldNotReachHere();
}
void LIR_Assembler::emit_static_call_stub() {
address call_pc = __ pc();
address stub = __ start_a_stub(call_stub_size());
if (stub == NULL) {
bailout("static call stub overflow");
return;
}
int start = __ offset();
__ relocate(static_stub_Relocation::spec(call_pc));
__ emit_static_call_stub();
assert(__ offset() - start + CompiledStaticCall::to_trampoline_stub_size()
<= call_stub_size(), "stub too big");
__ end_a_stub();
}
void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
assert(exceptionOop->as_register() == r0, "must match");
assert(exceptionPC->as_register() == r3, "must match");
// exception object is not added to oop map by LinearScan
// (LinearScan assumes that no oops are in fixed registers)
info->add_register_oop(exceptionOop);
Runtime1::StubID unwind_id;
// get current pc information
// pc is only needed if the method has an exception handler, the unwind code does not need it.
int pc_for_athrow_offset = __ offset();
InternalAddress pc_for_athrow(__ pc());
__ adr(exceptionPC->as_register(), pc_for_athrow);
add_call_info(pc_for_athrow_offset, info); // for exception handler
__ verify_not_null_oop(r0);
// search an exception handler (r0: exception oop, r3: throwing pc)
if (compilation()->has_fpu_code()) {
unwind_id = Runtime1::handle_exception_id;
} else {
unwind_id = Runtime1::handle_exception_nofpu_id;
}
__ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
// FIXME: enough room for two byte trap ????
__ nop();
}
void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
assert(exceptionOop->as_register() == r0, "must match");
__ b(_unwind_handler_entry);
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
switch (left->type()) {
case T_INT: {
switch (code) {
case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break;
case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break;
case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
default:
ShouldNotReachHere();
break;
}
break;
case T_LONG:
case T_ADDRESS:
case T_OBJECT:
switch (code) {
case lir_shl: __ lslv (dreg, lreg, count->as_register()); break;
case lir_shr: __ asrv (dreg, lreg, count->as_register()); break;
case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
default:
ShouldNotReachHere();
break;
}
break;
default:
ShouldNotReachHere();
break;
}
}
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
switch (left->type()) {
case T_INT: {
switch (code) {
case lir_shl: __ lslw (dreg, lreg, count); break;
case lir_shr: __ asrw (dreg, lreg, count); break;
case lir_ushr: __ lsrw (dreg, lreg, count); break;
default:
ShouldNotReachHere();
break;
}
break;
case T_LONG:
case T_ADDRESS:
case T_OBJECT:
switch (code) {
case lir_shl: __ lsl (dreg, lreg, count); break;
case lir_shr: __ asr (dreg, lreg, count); break;
case lir_ushr: __ lsr (dreg, lreg, count); break;
default:
ShouldNotReachHere();
break;
}
break;
default:
ShouldNotReachHere();
break;
}
}
}
void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
__ str (r, Address(sp, offset_from_rsp_in_bytes));
}
void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
__ mov (rscratch1, c);
__ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
}
void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
ShouldNotReachHere();
assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
__ lea(rscratch1, __ constant_oop_address(o));
__ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
}
// This code replaces a call to arraycopy; no exception may
// be thrown in this code, they must be thrown in the System.arraycopy
// activation frame; we could save some checks if this would not be the case
void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
ciArrayKlass* default_type = op->expected_type();
Register src = op->src()->as_register();
Register dst = op->dst()->as_register();
Register src_pos = op->src_pos()->as_register();
Register dst_pos = op->dst_pos()->as_register();
Register length = op->length()->as_register();
Register tmp = op->tmp()->as_register();
__ resolve(ACCESS_READ, src);
__ resolve(ACCESS_WRITE, dst);
CodeStub* stub = op->stub();
int flags = op->flags();
BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
if (is_reference_type(basic_type)) basic_type = T_OBJECT;
// if we don't know anything, just go through the generic arraycopy
if (default_type == NULL // || basic_type == T_OBJECT
) {
Label done;
assert(src == r1 && src_pos == r2, "mismatch in calling convention");
// Save the arguments in case the generic arraycopy fails and we
// have to fall back to the JNI stub
__ stp(dst, dst_pos, Address(sp, 0*BytesPerWord));
__ stp(length, src_pos, Address(sp, 2*BytesPerWord));
__ str(src, Address(sp, 4*BytesPerWord));
address copyfunc_addr = StubRoutines::generic_arraycopy();
assert(copyfunc_addr != NULL, "generic arraycopy stub required");
// The arguments are in java calling convention so we shift them
// to C convention
assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
__ mov(c_rarg0, j_rarg0);
assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
__ mov(c_rarg1, j_rarg1);
assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
__ mov(c_rarg2, j_rarg2);
assert_different_registers(c_rarg3, j_rarg4);
__ mov(c_rarg3, j_rarg3);
__ mov(c_rarg4, j_rarg4);
#ifndef PRODUCT
if (PrintC1Statistics) {
__ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
}
#endif
__ far_call(RuntimeAddress(copyfunc_addr));
__ cbz(r0, *stub->continuation());
// Reload values from the stack so they are where the stub
// expects them.
__ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord));
__ ldp(length, src_pos, Address(sp, 2*BytesPerWord));
__ ldr(src, Address(sp, 4*BytesPerWord));
// r0 is -1^K where K == partial copied count
__ eonw(rscratch1, r0, zr);
// adjust length down and src/end pos up by partial copied count
__ subw(length, length, rscratch1);
__ addw(src_pos, src_pos, rscratch1);
__ addw(dst_pos, dst_pos, rscratch1);
__ b(*stub->entry());
__ bind(*stub->continuation());
return;
}
assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
int elem_size = type2aelembytes(basic_type);
int shift_amount;
int scale = exact_log2(elem_size);
Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
// test for NULL
if (flags & LIR_OpArrayCopy::src_null_check) {
__ cbz(src, *stub->entry());
}
if (flags & LIR_OpArrayCopy::dst_null_check) {
__ cbz(dst, *stub->entry());
}
// If the compiler was not able to prove that exact type of the source or the destination
// of the arraycopy is an array type, check at runtime if the source or the destination is
// an instance type.
if (flags & LIR_OpArrayCopy::type_check) {
if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
__ load_klass(tmp, dst);
__ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
__ cmpw(rscratch1, Klass::_lh_neutral_value);
__ br(Assembler::GE, *stub->entry());
}
if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
__ load_klass(tmp, src);
__ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
__ cmpw(rscratch1, Klass::_lh_neutral_value);
__ br(Assembler::GE, *stub->entry());
}
}
// check if negative
if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
__ cmpw(src_pos, 0);
__ br(Assembler::LT, *stub->entry());
}
if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
__ cmpw(dst_pos, 0);
__ br(Assembler::LT, *stub->entry());
}
if (flags & LIR_OpArrayCopy::length_positive_check) {
__ cmpw(length, 0);
__ br(Assembler::LT, *stub->entry());
}
if (flags & LIR_OpArrayCopy::src_range_check) {
__ addw(tmp, src_pos, length);
__ ldrw(rscratch1, src_length_addr);
__ cmpw(tmp, rscratch1);
__ br(Assembler::HI, *stub->entry());
}
if (flags & LIR_OpArrayCopy::dst_range_check) {
__ addw(tmp, dst_pos, length);
__ ldrw(rscratch1, dst_length_addr);
__ cmpw(tmp, rscratch1);
__ br(Assembler::HI, *stub->entry());
}
if (flags & LIR_OpArrayCopy::type_check) {
// We don't know the array types are compatible
if (basic_type != T_OBJECT) {
// Simple test for basic type arrays
if (UseCompressedClassPointers) {
__ ldrw(tmp, src_klass_addr);
__ ldrw(rscratch1, dst_klass_addr);
__ cmpw(tmp, rscratch1);
} else {
__ ldr(tmp, src_klass_addr);
__ ldr(rscratch1, dst_klass_addr);
__ cmp(tmp, rscratch1);
}
__ br(Assembler::NE, *stub->entry());
} else {
// For object arrays, if src is a sub class of dst then we can
// safely do the copy.
Label cont, slow;
#define PUSH(r1, r2) \
stp(r1, r2, __ pre(sp, -2 * wordSize));
#define POP(r1, r2) \
ldp(r1, r2, __ post(sp, 2 * wordSize));
__ PUSH(src, dst);
__ load_klass(src, src);
__ load_klass(dst, dst);
__ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
__ PUSH(src, dst);
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
__ POP(src, dst);
__ cbnz(src, cont);
__ bind(slow);
__ POP(src, dst);
address copyfunc_addr = StubRoutines::checkcast_arraycopy();
if (copyfunc_addr != NULL) { // use stub if available
// src is not a sub class of dst so we have to do a
// per-element check.
int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
if ((flags & mask) != mask) {
// Check that at least both of them object arrays.
assert(flags & mask, "one of the two should be known to be an object array");
if (!(flags & LIR_OpArrayCopy::src_objarray)) {
__ load_klass(tmp, src);
} else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
__ load_klass(tmp, dst);
}
int lh_offset = in_bytes(Klass::layout_helper_offset());
Address klass_lh_addr(tmp, lh_offset);
jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
__ ldrw(rscratch1, klass_lh_addr);
__ mov(rscratch2, objArray_lh);
__ eorw(rscratch1, rscratch1, rscratch2);
__ cbnzw(rscratch1, *stub->entry());
}
// Spill because stubs can use any register they like and it's
// easier to restore just those that we care about.
__ stp(dst, dst_pos, Address(sp, 0*BytesPerWord));
__ stp(length, src_pos, Address(sp, 2*BytesPerWord));
__ str(src, Address(sp, 4*BytesPerWord));
__ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
__ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
assert_different_registers(c_rarg0, dst, dst_pos, length);
__ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
__ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
assert_different_registers(c_rarg1, dst, length);
__ uxtw(c_rarg2, length);
assert_different_registers(c_rarg2, dst);
__ load_klass(c_rarg4, dst);
__ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
__ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
__ far_call(RuntimeAddress(copyfunc_addr));
#ifndef PRODUCT
if (PrintC1Statistics) {
Label failed;
__ cbnz(r0, failed);
__ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
__ bind(failed);
}
#endif
__ cbz(r0, *stub->continuation());
#ifndef PRODUCT
if (PrintC1Statistics) {
__ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
}
#endif
assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
// Restore previously spilled arguments
__ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord));
__ ldp(length, src_pos, Address(sp, 2*BytesPerWord));
__ ldr(src, Address(sp, 4*BytesPerWord));
// return value is -1^K where K is partial copied count
__ eonw(rscratch1, r0, zr);
// adjust length down and src/end pos up by partial copied count
__ subw(length, length, rscratch1);
__ addw(src_pos, src_pos, rscratch1);
__ addw(dst_pos, dst_pos, rscratch1);
}
__ b(*stub->entry());
__ bind(cont);
__ POP(src, dst);
}
}
#ifdef ASSERT
if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
// Sanity check the known type with the incoming class. For the
// primitive case the types must match exactly with src.klass and
// dst.klass each exactly matching the default type. For the
// object array case, if no type check is needed then either the
// dst type is exactly the expected type and the src type is a
// subtype which we can't check or src is the same array as dst
// but not necessarily exactly of type default_type.
Label known_ok, halt;
__ mov_metadata(tmp, default_type->constant_encoding());
if (UseCompressedClassPointers) {
__ encode_klass_not_null(tmp);
}
if (basic_type != T_OBJECT) {
if (UseCompressedClassPointers) {
__ ldrw(rscratch1, dst_klass_addr);
__ cmpw(tmp, rscratch1);
} else {
__ ldr(rscratch1, dst_klass_addr);
__ cmp(tmp, rscratch1);
}
__ br(Assembler::NE, halt);
if (UseCompressedClassPointers) {
__ ldrw(rscratch1, src_klass_addr);
__ cmpw(tmp, rscratch1);
} else {
__ ldr(rscratch1, src_klass_addr);
__ cmp(tmp, rscratch1);
}
__ br(Assembler::EQ, known_ok);
} else {
if (UseCompressedClassPointers) {
__ ldrw(rscratch1, dst_klass_addr);
__ cmpw(tmp, rscratch1);
} else {
__ ldr(rscratch1, dst_klass_addr);
__ cmp(tmp, rscratch1);
}
__ br(Assembler::EQ, known_ok);
__ cmp(src, dst);
__ br(Assembler::EQ, known_ok);
}
__ bind(halt);
__ stop("incorrect type information in arraycopy");
__ bind(known_ok);
}
#endif
#ifndef PRODUCT
if (PrintC1Statistics) {
__ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
}
#endif
__ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
__ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
assert_different_registers(c_rarg0, dst, dst_pos, length);
__ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
__ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
assert_different_registers(c_rarg1, dst, length);
__ uxtw(c_rarg2, length);
assert_different_registers(c_rarg2, dst);
bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
const char *name;
address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
CodeBlob *cb = CodeCache::find_blob(entry);
if (cb) {
__ far_call(RuntimeAddress(entry));
} else {
__ call_VM_leaf(entry, 3);
}
__ bind(*stub->continuation());
}
void LIR_Assembler::emit_lock(LIR_OpLock* op) {
Register obj = op->obj_opr()->as_register(); // may not be an oop
Register hdr = op->hdr_opr()->as_register();
Register lock = op->lock_opr()->as_register();
if (!UseFastLocking) {
__ b(*op->stub()->entry());
} else if (op->code() == lir_lock) {
Register scratch = noreg;
if (UseBiasedLocking) {
scratch = op->scratch_opr()->as_register();
}
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
__ resolve(ACCESS_READ | ACCESS_WRITE, obj);
// add debug info for NullPointerException only if one is possible
int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
if (op->info() != NULL) {
add_debug_info_for_null_check(null_check_offset, op->info());
}
// done
} else if (op->code() == lir_unlock) {
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
__ unlock_object(hdr, obj, lock, *op->stub()->entry());
} else {
Unimplemented();
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
ciMethod* method = op->profiled_method();
int bci = op->profiled_bci();
ciMethod* callee = op->profiled_callee();
// Update counter for all call types
ciMethodData* md = method->method_data_or_null();
assert(md != NULL, "Sanity");
ciProfileData* data = md->bci_to_data(bci);
assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
Register mdo = op->mdo()->as_register();
__ mov_metadata(mdo, md->constant_encoding());
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
// Perform additional virtual call profiling for invokevirtual and
// invokeinterface bytecodes
if (op->should_profile_receiver_type()) {
assert(op->recv()->is_single_cpu(), "recv must be allocated");
Register recv = op->recv()->as_register();
assert_different_registers(mdo, recv);
assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
ciKlass* known_klass = op->known_holder();
if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
// We know the type that will be seen at this call site; we can
// statically update the MethodData* rather than needing to do
// dynamic tests on the receiver type
// NOTE: we should probably put a lock around this search to
// avoid collisions by concurrent compilations
ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (known_klass->equals(receiver)) {
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
__ addptr(data_addr, DataLayout::counter_increment);
return;
}
}
// Receiver type not found in profile data; select an empty slot
// Note that this is less efficient than it should be because it
// always does a write to the receiver part of the
// VirtualCallData rather than just the first time
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (receiver == NULL) {
Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
__ mov_metadata(rscratch1, known_klass->constant_encoding());
__ lea(rscratch2, recv_addr);
__ str(rscratch1, Address(rscratch2));
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
__ addptr(data_addr, DataLayout::counter_increment);
return;
}
}
} else {
__ load_klass(recv, recv);
Label update_done;
type_profile_helper(mdo, md, data, recv, &update_done);
// Receiver did not match any saved receiver and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
__ addptr(counter_addr, DataLayout::counter_increment);
__ bind(update_done);
}
} else {
// Static call
__ addptr(counter_addr, DataLayout::counter_increment);
}
}
void LIR_Assembler::emit_delay(LIR_OpDelay*) {
Unimplemented();
}
void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
__ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
}
void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
assert(op->crc()->is_single_cpu(), "crc must be register");
assert(op->val()->is_single_cpu(), "byte value must be register");
assert(op->result_opr()->is_single_cpu(), "result must be register");
Register crc = op->crc()->as_register();
Register val = op->val()->as_register();
Register res = op->result_opr()->as_register();
assert_different_registers(val, crc, res);
unsigned long offset;
__ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
if (offset) __ add(res, res, offset);
__ mvnw(crc, crc); // ~crc
__ update_byte_crc32(crc, val, res);
__ mvnw(res, crc); // ~crc
}
void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
COMMENT("emit_profile_type {");
Register obj = op->obj()->as_register();
Register tmp = op->tmp()->as_pointer_register();
Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
ciKlass* exact_klass = op->exact_klass();
intptr_t current_klass = op->current_klass();
bool not_null = op->not_null();
bool no_conflict = op->no_conflict();
Label update, next, none;
bool do_null = !not_null;
bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
assert(do_null || do_update, "why are we here?");
assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
assert(mdo_addr.base() != rscratch1, "wrong register");
__ verify_oop(obj);
if (tmp != obj) {
__ mov(tmp, obj);
}
if (do_null) {
__ cbnz(tmp, update);
if (!TypeEntries::was_null_seen(current_klass)) {
__ ldr(rscratch2, mdo_addr);
__ orr(rscratch2, rscratch2, TypeEntries::null_seen);
__ str(rscratch2, mdo_addr);
}
if (do_update) {
#ifndef ASSERT
__ b(next);
}
#else
__ b(next);
}
} else {
__ cbnz(tmp, update);
__ stop("unexpected null obj");
#endif
}
__ bind(update);
if (do_update) {
#ifdef ASSERT
if (exact_klass != NULL) {
Label ok;
__ load_klass(tmp, tmp);
__ mov_metadata(rscratch1, exact_klass->constant_encoding());
__ eor(rscratch1, tmp, rscratch1);
__ cbz(rscratch1, ok);
__ stop("exact klass and actual klass differ");
__ bind(ok);
}
#endif
if (!no_conflict) {
if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
if (exact_klass != NULL) {
__ mov_metadata(tmp, exact_klass->constant_encoding());
} else {
__ load_klass(tmp, tmp);
}
__ ldr(rscratch2, mdo_addr);
__ eor(tmp, tmp, rscratch2);
__ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
// klass seen before, nothing to do. The unknown bit may have been
// set already but no need to check.
__ cbz(rscratch1, next);
__ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
if (TypeEntries::is_type_none(current_klass)) {
__ cbz(rscratch2, none);
__ cmp(rscratch2, (u1)TypeEntries::null_seen);
__ br(Assembler::EQ, none);
// There is a chance that the checks above (re-reading profiling
// data from memory) fail if another thread has just set the
// profiling to this obj's klass
__ dmb(Assembler::ISHLD);
__ ldr(rscratch2, mdo_addr);
__ eor(tmp, tmp, rscratch2);
__ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
__ cbz(rscratch1, next);
}
} else {
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
__ ldr(tmp, mdo_addr);
__ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
}
// different than before. Cannot keep accurate profile.
__ ldr(rscratch2, mdo_addr);
__ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
__ str(rscratch2, mdo_addr);
if (TypeEntries::is_type_none(current_klass)) {
__ b(next);
__ bind(none);
// first time here. Set profile type.
__ str(tmp, mdo_addr);
}
} else {
// There's a single possible klass at this profile point
assert(exact_klass != NULL, "should be");
if (TypeEntries::is_type_none(current_klass)) {
__ mov_metadata(tmp, exact_klass->constant_encoding());
__ ldr(rscratch2, mdo_addr);
__ eor(tmp, tmp, rscratch2);
__ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
__ cbz(rscratch1, next);
#ifdef ASSERT
{
Label ok;
__ ldr(rscratch1, mdo_addr);
__ cbz(rscratch1, ok);
__ cmp(rscratch1, (u1)TypeEntries::null_seen);
__ br(Assembler::EQ, ok);
// may have been set by another thread
__ dmb(Assembler::ISHLD);
__ mov_metadata(rscratch1, exact_klass->constant_encoding());
__ ldr(rscratch2, mdo_addr);
__ eor(rscratch2, rscratch1, rscratch2);
__ andr(rscratch2, rscratch2, TypeEntries::type_mask);
__ cbz(rscratch2, ok);
__ stop("unexpected profiling mismatch");
__ bind(ok);
}
#endif
// first time here. Set profile type.
__ ldr(tmp, mdo_addr);
} else {
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
__ ldr(tmp, mdo_addr);
/**代码未完, 请加载全部代码(NowJava.com).**/