集册 Java实例教程 所有节点对之间的最短路径

所有节点对之间的最短路径

欢马劈雪     最近更新时间:2020-01-02 10:19:05

562
提示:您可在线编辑运行本教程的实例 - 运行实例,去试试!
所有节点对之间的最短路径

import java.util.Arrays;


//Runtime: O(V^3). Shortest path between all the pairs of nodes, works with negative cycle.

public class FloydWarshall {
/** 
 来自 nowjava.com - 时  代  Java**/

    //gWeights[i][j] must contain the weight of the edge ij if there is an edge i->j, 0 if i=j, otherwise +infinity if there is no edge i->j

    /**

     * 

     * @param gWeights it's a matrix V*V where V is the number of verticies. gWeights[u][v] = w if there is an edge between u and v of weight w, gWeights[u][u]=0, gWeights[u][v]=DOUBLE.POSITIVE_INFINITY if there is no edge between u and v

     * @return matrix[V][V] where matrix[u][v]=min distance to go from u to v

     */

    public static double[][] floydWarshall(double[][] gWeights) {

        double[][] minDistances = gWeights.clone();

        int[][] paths = new int[gWeights.length][gWeights[0].length]; //paths[i][j] contains the optimal predecessor of j to reach i

        //initialize the current predessors with the edges of the graph

        for (int i = 0; i < gWeights.length; i++) {

            for (int j = 0; j < gWeights[0].length; j++) {

                if (gWeights[i][j] < Double.POSITIVE_INFINITY && i != j) { //means there is an edge between i and j

                    paths[i][j] = i; //mark i as the predecessor of j to reach i

                } else {

                    paths[i][j] = -1; //there is not edge, so mark -1

                }

            }/**来 自 nowjava - 时  代  Java**/

        }

        //for every pair test if there is a shorter path gowing through another node

        for (int k = 0; k < gWeights.length; k++) {// test if ik->kj shorter than current i->j

            for (int i = 0; i < gWeights.length; i++) {

                for (int j = 0; j < gWeights.length; j++) { //pair i,j


                    if (minDistances[i][j] > minDistances[i][k]

                            + minDistances[k][j]) {

                        minDistances[i][j] = minDistances[i][k]

                                + minDistances[k][j];

                        paths[i][j] = paths[k][j]; //the predecessor of j to reach i is the predecessor of j to reach k

                    }

                }

            }

        }

        //if one distance from a node to itself changed to a negative value, it means that there is a negative cycle in the graph, => return null

        for (int i = 0; i < minDistances.length; i++) {

            if (minDistances[i][i] != 0) {

                return null; //there is a negative cycle in the graph

            }

        }

        return minDistances;

    }


    public static void main(String[] args) {

        double[][] gWeights = new double[][] {

                { 0, 3, 6, 15 },

                { Double.POSITIVE_INFINITY, 0, -2, Double.POSITIVE_INFINITY },

                { Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 0, 2 },

                { 1, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 0 } };


        System.out.println(
展开阅读全文