集册 Java实例教程 给出数组的百分位数

给出数组的百分位数

欢马劈雪     最近更新时间:2020-01-02 10:19:05

594
给出数组的百分位数


//package com.nowjava;


public class Main {// 来 自 N  o w  J a v a . c o m

    public static void main(String[] argv) throws Exception {

        double[] v = new double[] { 34.45, 35.45, 36.67, 37.78, 37.0000,

                37.1234, 67.2344, 68.34534, 69.87700 };

        double p = 2.45678;

        System.out.println(percentile(v, p));

    }


    /**

     * Gives the percentile of an array

     *

     * @param p percentile, must be between 0 and 1

     * @throws IllegalArgumentException if parameter.

     *                                  p is not between 0 and 1.

     */

    public static double percentile(double[] v, double p) {

        if ((p < 0) || (p > 1)) {

            throw new IllegalArgumentException(

                    "Percentile must be between 0 and 1 : " + p);

        }

        double[] ans = sortMinToMax(v);
        /**
        来 自 nowjava.com - 时代Java
        **/

        int pos = (int) Math.floor(p * (ans.length - 1));

        double dif = p * (ans.length - 1)

                - Math.floor(p * (ans.length - 1));

        if (pos == (ans.length - 1))

            return (ans[ans.length - 1]);

        else

            return (ans[pos] * (1.0 - dif) + ans[pos + 1] * dif);

    }


    /**

     * Gives the percentile of an array.

     *

     * @param p percentile, must be between 0 and 1

     * @throws IllegalArgumentException if parameter

     *                                  p is not between 0 and 1.

     */

    public static double percentile(int[] v, double p) {

        if ((p < 0) || (p > 1)) {

            throw new IllegalArgumentException(

                    "Percentile must be between 0 and 1 : " + p);

        }

        int[] ans = sortMinToMax(v);

        int pos = (int) Math.floor(p * (ans.length - 1));

        double dif = p * (ans.length - 1)

                - Math.floor(p * (ans.length - 1));

        if (pos == (ans.length - 1))

            return (ans[ans.length - 1]);

        else

            return (ans[pos] * (1.0 - dif) + ans[pos + 1] * dif);

    }


    /**

     * Returns a sorted array from the minimum to the maximum value.

     */

    public static double[] sortMinToMax(double[] v) {

        double[] ans = copy(v);

        quickSortMinToMax(ans, 0, ans.length - 1);

        return (ans);

    }


    /**

     * Returns a sorted array from the minimum to the maximum value.

     */

    public static int[] sortMinToMax(int[] v) {

        int[] ans = copy(v);

        quickSortMinToMax(ans, 0, ans.length - 1);

        return (ans);

    }


    /**

     * Returns a copy of the array.

     */

    //a call to array.clone() may also work although this is a primitive type. I haven't checked

    //it even may be faster

    public static int[] copy(int[] array) {

        int[] result;

        result = new int[array.length];

        System.arraycopy(array, 0, result, 0, array.length);

        return result;

    }


    /**

     * Returns a copy of the array.

     */

    //a call to array.clone() may also work although this is a primitive type. I haven't checked

    //it even may be faster

    public static long[] copy(long[] array) {

        long[] result;

        result = new long[array.length];

        System.arraycopy(array, 0, result, 0, array.length);

        return result;

    }


    /**

     * Returns a copy of the array.

     */

    //a call to array.clone() may also work although this is a primitive type. I haven't checked

    //it even may be faster

    public static float[] copy(float[] array) {

        float[] result;

        result = new float[array.length];

        System.arraycopy(array, 0, result, 0, array.length);

        return result;

    }


    /**

     * Returns a copy of the array.

     */

    //a call to array.clone() may also work although this is a primitive type. I haven't checked

    //it even may be faster

    public static double[] copy(double[] array) {

        double[] result;

        result = new double[array.length];

        System.arraycopy(array, 0, result, 0, array.length);

        return result;

    }


    /**

     * Returns a copy of the array.

     */

    public static double[][] copy(double[][] v) {

        double[][] ans = new double[v.length][];

        for (int k = 0; k < v.length; k++)

            ans[k] = copy(v[k]);

        return (ans);

    }


    /**

     * Returns a copy of the array.

     */

    public static int[][] copy(int[][] v) {

        int[][] ans = new int[v.length][];

        for (int k = 0; k < v.length; k++)

            ans[k] = copy(v[k]);

        return (ans);

    }


    /**

     * This is a generic version of C.A.R Hoare's Quick Sort

     * algorithm.  This will handle arrays that are already

     * sorted, and arrays with duplicate keys.<BR>

     * <p/>

     * If you think of a one dimensional array as going from

     * the lowest index on the left to the highest index on the right

     * then the parameters to this function are lowest index or

     * left and highest index or right.  The first time you call

     * this function it will be with the parameters 0, a.length - 1.

     * (taken out of a code by James Gosling and Kevin A. Smith provided

     * with Sun's JDK 1.1.7)

     *

     * @param a   an integer array

     * @param lo0 left boundary of array partition (inclusive).

     * @param hi0 right boundary of array partition (inclusive).

     * @deprecated

     */

    private static void quickSortMinToMax(int a[], int lo0, int hi0) {

        int lo = lo0;

        int hi = hi0;

        int mid;


        if (hi0 > lo0) {


            /* Arbitrarily establishing partition element as the midpoint of

             * the array.

             */

            mid = a[(int) Math.round((lo0 + hi0) / 2.0)];


            // loop through the array until indices cross

            while (lo <= hi) {

                /* find the first element that is greater than or equal to

                 * the partition element starting from the left Index.

                 */

                while ((lo < hi0) && (a[lo] < mid))

                    ++lo;


                /* find an element that is smaller than or equal to

                 * the partition element starting from the right Index.

                 */

                while ((hi > lo0) && (a[hi] > mid))

                    --hi;


                // if the indexes have not crossed, swap

                if (lo <= hi) {

                    swap(a, lo, hi);

                    ++lo;

                    --hi;

                }

            }


            /* If the right index has not reached the left side of array

             * must now sort the left partition.

             */

            if (lo0 < hi)

                quickSortMinToMax(a, lo0, hi);


            /* If the left index has not reached the right side of array

             * must now sort the right partition.

             */

            if (lo < hi0)

                quickSortMinToMax(a, lo, hi0);


        }

    }


    /**

     * This is a generic version of C.A.R Hoare's Quick Sort

     * algorithm.  This will handle arrays that are already

     * sorted, and arrays with duplicate keys.<BR>

     * <p/>

     * If you think of a one dimensional array as going from

     * the lowest index on the left to the highest index on the right

     * then the parameters to this function are lowest index or

     * left and highest index or right.  The first time you call

     * this function it will be with the parameters 0, a.length - 1.

     * (taken out of a code by James Gosling and Kevin A. Smith provided

     * with Sun's JDK 1.1.7)

     *

     * @param a   a double array

     * @param lo0 left boundary of array partition (inclusive).

     * @param hi0 right boundary of array partition (inclusive).

     * @deprecated

     */

    private static void quickSortMinToMax(double a[], int lo0, int hi0) {

        int lo = lo0;

        int hi = hi0;

        double mid;


        if (hi0 > lo0) {


            /* Arbitrarily establishing partition element as the midpoint of

             * the array.

             */

            mid = a[(int) Math.round((lo0 + hi0) / 2.0)];


            // loop through the array until indices cross

            while (lo <= hi) {

                /* find the first element that is greater than or equal to

                 * the partition element starting from the left Index.

                 */

                while ((lo <
展开阅读全文