集册 Java实例教程 返回从最小值到最大值的排序数组。

返回从最小值到最大值的排序数组。

欢马劈雪     最近更新时间:2020-01-02 10:19:05

462
提示:您可在线编辑运行本教程的实例 - 运行实例,去试试!
返回从最小值到最大值的排序数组。


//package com.nowjava;
/*来 自 NowJava.com*/

public class Main {

    public static void main(String[] argv) throws Exception {

        double[] v = new double[] { 34.45, 35.45, 36.67, 37.78, 37.0000,

                37.1234, 67.2344, 68.34534, 69.87700 };

        System.out.println(java.util.Arrays.toString(sortMinToMax(v)));

    }


    /**

     * Returns a sorted array from the minimum to the maximum value.

     */

    public static double[] sortMinToMax(double[] v) {

        double[] ans = copy(v);

        quickSortMinToMax(ans, 0, ans.length - 1);
        /*
        nowjava.com - 时代Java 提供
        */

        return (ans);

    }


    /**

     * Returns a sorted array from the minimum to the maximum value.

     */

    public static int[] sortMinToMax(int[] v) {

        int[] ans = copy(v);

        quickSortMinToMax(ans, 0, ans.length - 1);

        return (ans);

    }


    /**

     * Returns a comma delimited string representing the value of the array.

     */

    public static String toString(double[] array) {


        StringBuffer buf = new StringBuffer(array.length);

        int i;

        for (i = 0; i < array.length - 1; i++) {

            buf.append(array[i]);

            buf.append(',');

        }

        buf.append(array[i]);

        return buf.toString();

    }


    /**

     * Returns a comma delimited string representing the value of the array.

     */

    public static String toString(double[][] array) {

        StringBuffer buf = new StringBuffer();

        for (int k = 0; k < array.length; k++) {

            buf.append(toString(array[k]));

            buf.append(System.getProperty("line.separator"));

        }

        return buf.toString();

    }


    /**

     * Returns a comma delimited string representing the value of the array.

     */

    public static String toString(int[] array) {

        StringBuffer buf = new StringBuffer(array.length);

        int i;

        for (i = 0; i < array.length - 1; i++) {

            buf.append(array[i]);

            buf.append(',');

        }

        buf.append(array[i]);

        return buf.toString();

    }


    /**

     * Returns a comma delimited string representing the value of the array.

     */

    public static String toString(int[][] array) {

        StringBuffer buf = new StringBuffer();

        for (int k = 0; k < array.length; k++) {

            buf.append(toString(array[k]));

            buf.append(System.getProperty("line.separator"));

        }

        return buf.toString();

    }


    /**

     * Returns a copy of the array.

     */

    //a call to array.clone() may also work although this is a primitive type. I haven't checked

    //it even may be faster

    public static int[] copy(int[] array) {

        int[] result;

        result = new int[array.length];

        System.arraycopy(array, 0, result, 0, array.length);

        return result;

    }


    /**

     * Returns a copy of the array.

     */

    //a call to array.clone() may also work although this is a primitive type. I haven't checked

    //it even may be faster

    public static long[] copy(long[] array) {

        long[] result;

        result = new long[array.length];

        System.arraycopy(array, 0, result, 0, array.length);

        return result;

    }


    /**

     * Returns a copy of the array.

     */

    //a call to array.clone() may also work although this is a primitive type. I haven't checked

    //it even may be faster

    public static float[] copy(float[] array) {

        float[] result;

        result = new float[array.length];

        System.arraycopy(array, 0, result, 0, array.length);

        return result;

    }


    /**

     * Returns a copy of the array.

     */

    //a call to array.clone() may also work although this is a primitive type. I haven't checked

    //it even may be faster

    public static double[] copy(double[] array) {

        double[] result;

        result = new double[array.length];

        System.arraycopy(array, 0, result, 0, array.length);

        return result;

    }


    /**

     * Returns a copy of the array.

     */

    public static double[][] copy(double[][] v) {

        double[][] ans = new double[v.length][];

        for (int k = 0; k < v.length; k++)

            ans[k] = copy(v[k]);

        return (ans);

    }


    /**

     * Returns a copy of the array.

     */

    public static int[][] copy(int[][] v) {

        int[][] ans = new int[v.length][];

        for (int k = 0; k < v.length; k++)

            ans[k] = copy(v[k]);

        return (ans);

    }


    /**

     * This is a generic version of C.A.R Hoare's Quick Sort

     * algorithm.  This will handle arrays that are already

     * sorted, and arrays with duplicate keys.<BR>

     * <p/>

     * If you think of a one dimensional array as going from

     * the lowest index on the left to the highest index on the right

     * then the parameters to this function are lowest index or

     * left and highest index or right.  The first time you call

     * this function it will be with the parameters 0, a.length - 1.

     * (taken out of a code by James Gosling and Kevin A. Smith provided

     * with Sun's JDK 1.1.7)

     *

     * @param a   an integer array

     * @param lo0 left boundary of array partition (inclusive).

     * @param hi0 right boundary of array partition (inclusive).

     * @deprecated

     */

    private static void quickSortMinToMax(int a[], int lo0, int hi0) {

        int lo = lo0;

        int hi = hi0;

        int mid;


        if (hi0 > lo0) {


            /* Arbitrarily establishing partition element as the midpoint of

             * the array.

             */

            mid = a[(int) Math.round((lo0 + hi0) / 2.0)];


            // loop through the array until indices cross

            while (lo <= hi) {

                /* find the first element that is greater than or equal to

                 * the partition element starting from the left Index.

                 */

                while ((lo < hi0) && (a[lo] < mid))

                    ++lo;


                /* find an element that is smaller than or equal to

                 * the partition element starting from the right Index.

                 */

                while ((hi > lo0) && (a[hi] > mid))

                    --hi;


                // if the indexes have not crossed, swap

                if (lo <= hi) {

                    swap(a, lo, hi);

                    ++lo;

                    --hi;

                }

            }


            /* If the right index has not reached the left side of array

             * must now sort the left partition.

             */

            if (lo0 < hi)

                quickSortMinToMax(a, lo0, hi);


            /* If the left index has not reached the right side of array

             * must now sort the right partition.

             */

            if (lo < hi0)

                quickSortMinToMax(a, lo, hi0);


        }

    }


    /**

     * This is a generic version of C.A.R Hoare's Quick Sort

     * algorithm.  This will handle arrays that are already

     * sorted, and arrays with duplicate keys.<BR>

     * <p/>

     * If you think of a one dimensional array as going from

     * the lowest index on the left to the highest index on the right

     * then the parameters to this function are lowest index or

     * left and highest index or right.  The first time you call

     * this function it will be with the parameters 0, a.length - 1.

     * (taken out of a code by James Gosling and Kevin A. Smith provided

     * with Sun's JDK 1.1.7)

     *

     * @param a   a double array

     * @param lo0 left boundary of array partition (inclusive).

     * @param hi0 right boundary of array partition (inclusive).

     * @deprecated

     */

    private static void quickSortMinToMax(double a[], int lo0, int hi0) {

        int lo = lo0;

        int hi = hi0;

        double mid;


        if (hi0 > lo0) {


            /* Arbitrarily establishing partition element as the midpoint of

             * the array.

             */

            mid = a[(int) Math.round((lo0 + hi0) / 2.0)];


            // loop through the array until indices cross

            while (lo <= hi) {

                /* find the first element that is greater than or equal to

                 * the partition element starting from the left Index.

                 */

                while ((lo
展开阅读全文