在大数据处理领域,Apache Flink以其流处理和批处理一体化的能力,成为许多企业的首选。然而,随着数据量的增长,性能优化变得至关重要。本文将深入浅出地探讨Flink SQL的常见性能问题、调优方法、易错点及调优技巧,并提供代码示例。、
-- 设置并行度
SET 'parallelism.default' = 16;
PARTITION BY
语句进行分区,提高并行度。SELECT * FROM source_table PARTITION BY key;
-- 设置RocksDB状态后端
SET 'state.backend' = 'rocksdb';
-- 清理超时状态
SET 'state.backend.rocksdb.time-basedCleaningPolicy.enable' = true;
SET 'state.backend.rocksdb.time-basedCleaningPolicy.time-interval' = '30m';
SELECT * FROM stream WINDOW TUMBLING (SIZE 5 MINUTES, ADVANCE BY 1 MINUTE);
-- 使用Broadcast JOIN
SELECT * FROM table1 JOIN table2 WITH BROADCAST ON table1.key = table2.key;
-- 设置全局并发度
SET 'jobmanager.memory.process.size' = '4g';
-- 启用动态资源分配
SET 'pipeline.parallelism.stepping' = true;
EXPLAIN SELECT * FROM table;
-- 启用检查点
SET 'state.checkpoints.enabled' = true;
SELECT DISTINCT column1, column2 FROM table;
CREATE FUNCTION my_udf AS 'com.example.MyUDF';
SELECT my_udf(column) FROM table;
-- 设置Kryo序列化
SET 'execution.runtime.serialization' = 'kryo';
-- 启用压缩
SET 'execution.network.tcp.compress' = true;
SELECT * FROM table PARTITION BY key;
-- 设置缓冲区大小
SET 'taskmanager.network.memory.fraction' = 0.1;
-- 设置缓冲区数量
SET 'taskmanager.network.numberOfBuffers' = 1024;
本文系作者在时代Java发表,未经许可,不得转载。
如有侵权,请联系nowjava@qq.com删除。