Apache Hudi 是由 Uber 开发并开源的数据湖框架,它于 2019 年 1 月进入 Apache 孵化器孵化,次年 5 月份顺利毕业晋升为 Apache 顶级项目。是当前最为热门的数据湖框架之一。
Hudi 自诞生至今一直使用 Spark 作为其数据处理引擎。如果用户想使用 Hudi 作为其数据湖框架,就必须在其平台技术栈中引入 Spark。放在几年前,使用 Spark 作为大数据处理引擎可以说是很平常甚至是理所当然的事。因为 Spark 既可以进行批处理也可以使用微批模拟流,流批一体,一套引擎解决流、批问题。然而,近年来,随着大数据技术的发展,同为大数据处理引擎的 Flink 逐渐进入人们的视野,并在计算引擎领域获占据了一定的市场,大数据处理引擎不再是一家独大。在大数据技术社区、论坛等领地,Hudi 是否支持使用 Flink 计算引擎的的声音开始逐渐出现,并日渐频繁。所以使 Hudi 支持 Flink 引擎是个有价值的事情,而集成 Flink 引擎的前提是 Hudi 与 Spark 解耦。
同时,纵观大数据领域成熟、活跃、有生命力的框架,无一不是设计优雅,能与其他框架相互融合,彼此借力,各专所长。因此将 Hudi 与 Spark 解耦,将其变成一个引擎无关的数据湖框架,无疑是给 Hudi 与其他组件的融合创造了更多的可能,使得 Hudi 能更好的融入大数据生态圈。
Hudi 内部使用 Spark API 像我们平时开发使用 List 一样稀松平常。自从数据源读取数据,到最终写出数据到表,无处不是使用 Spark RDD 作为主要数据结构,甚至连普通的工具类,都使用 Spark API 实现,可以说 Hudi 就是用 Spark 实现的一个通用数据湖框架,它与 Spark 的绑定可谓是深入骨髓。
此外,此次解耦后集成的首要引擎是 Flink。而 Flink 与 Spark 在核心抽象上差异很大。Spark 认为数据是有界的,其核心抽象是一个有限的数据集合。而 Flink 则认为数据的本质是流,其核心抽象 DataStream 中包含的是各种对数据的操作。同时,Hudi 内部还存在多处同时操作多个 RDD,以及将一个 RDD 的处理结果与另一个 RDD 联合处理的情况,这种抽象上的区别以及实现时对于中间结果的复用,使得 Hudi 在解耦抽象上难以使用统一的 API 同时操作 RDD 和 DataStream。
理论上,Hudi 使用 Spark 作为其计算引擎无非是为了使用 Spark 的分布式计算能力以及 RDD 丰富的算子能力。抛开分布式计算能力外,Hudi 更多是把 RDD 作为一个数据结构抽象,而 RDD 本质上又是一个有界数据集,因此,把 RDD 换成 List,在理论上完全可行(当然,可能会牺牲些性能)。为了尽可能保证 Hudi Spark 版本的性能和稳定性。我们可以保留将有界数据集作为基本操作单位的设定,Hudi 主要操作 API 不变,将 RDD 抽取为一个泛型,Spark 引擎实现仍旧使用 RDD,其他引擎则根据实际情况使用 List 或者其他有界数据集。
解耦原则:
1)统一泛型。Spark API 用到的 JavaRDD,JavaRDD,JavaRDD 统一使用泛型 I,K,O 代替;
2)去 Spark 化。抽象层所有 API 必须与 Spark 无关。涉及到具体操作难以在抽象层实现的,改写为抽象方法,引入 Spark 子类实现。
例如:Hudi 内部多处使用到了 JavaSparkContext#map() 方法,去 Spark 化,则需要将 JavaSparkContext 隐藏,针对该问题我们引入了 HoodieEngineContext#map() 方法,该方法会屏蔽 map 的具体实现细节,从而在抽象成实现去 Spark 化。
3)抽象层尽量减少改动,保证 Hudi 原版功能和性能;
4)使用 HoodieEngineContext 抽象类替换 JavaSparkContext,提供运行环境上下文。
Hudi 的写操作在本质上是批处理,DeltaStreamer 的连续模式是通过循环进行批处理实现的。为使用统一 API,Hudi 集成 Flink 时选择攒一批数据后再进行处理,最后统一进行提交(这里 Flink 我们使用 List 来攒批数据)。
攒批操作最容易想到的是通过使用时间窗口来实现,然而,使用窗口,在某个窗口没有数据流入时,将没有输出数据,Sink 端难以判断同一批数据是否已经处理完。因此我们使用 Flink 的检查点机制来攒批,每两个 Barrier 之间的数据为一个批次,当某个子任务中没有数据时,mock 结果数据凑数。这样在 Sink 端,当每个子任务都有结果数据下发时即可认为一批数据已经处理完成,可以执行 commit。
DAG 如下:
注:InstantGeneratorOperator 和 WriteProcessOperator 均为自定义的 Flink 算子,InstantGeneratorOperator 会在其内部阻塞检查上一个 instant 的状态,保证全局只有一个 inflight(或 requested)状态的 instant.WriteProcessOperator 是实际执行写操作的地方,其写操作在 checkpoint 时触发。
/**
* Abstract implementation of a HoodieTable.
*
* @param <T> Sub type of HoodieRecordPayload
* @param <I> Type of inputs
* @param <K> Type of keys
* @param <O> Type of outputs
*/
public abstract class HoodieTable<T extends HoodieRecordPayload, I, K, O> implements Serializable {
protected final HoodieWriteConfig config;
protected final HoodieTableMetaClient metaClient;
protected final HoodieIndex<T, I, K, O> index;
public abstract HoodieWriteMetadata<O> upsert(HoodieEngineContext context, String instantTime,
I records);
public abstract HoodieWriteMetadata<O> insert(HoodieEngineContext context, String instantTime,
I records);
public abstract HoodieWriteMetadata<O> bulkInsert(HoodieEngineContext context, String instantTime,
I records, Option<BulkInsertPartitioner<I>> bulkInsertPartitioner);
......
}
HoodieTable 是 Hudi 的核心抽象之一,其中定义了表支持的 insert,upsert,bulkInsert 等操作。以 upsert 为例,输入数据由原先的 JavaRDD inputRdds 换成了 I records, 运行时 JavaSparkContext jsc 换成了 HoodieEngineContext context.
从类注释可以看到 T,I,K,O 分别代表了 Hudi 操作的负载数据类型、输入数据类型、主键类型以及输出数据类型。这些泛型将贯穿整个抽象层。
/**
* Base class contains the context information needed by the engine at runtime. It will be extended by different
* engine implementation if needed.
*/
public abstract class HoodieEngineContext {
public abstract <I, O> List<O> map(List<I> data, SerializableFunction<I, O> func, int parallelism);
public abstract <I, O> List<O> flatMap(List<I> data, SerializableFunction<I, Stream<O>> func, int parallelism);
public abstract <I> void foreach(List<I> data, SerializableConsumer<I> consumer, int parallelism);
......
}
HoodieEngineContext 扮演了 JavaSparkContext 的角色,它不仅能提供所有 JavaSparkContext 能提供的信息,还封装了 map,flatMap,foreach 等诸多方法,隐藏了 JavaSparkContext#map(),JavaSparkContext#flatMap(),JavaSparkContext#foreach() 等方法的具体实现。
以 map 方法为例,在 Spark 的实现类 HoodieSparkEngineContext 中,map 方法如下:
@Override
public <I, O> List<O> map(List<I> data, SerializableFunction<I, O> func, int parallelism) {
return javaSparkContext.parallelize(data, parallelism).map(func::apply).collect();
}
在操作 List 的引擎中其实现可以为(不同方法需注意线程安全问题,慎用 parallel()):
@Override
public <I, O> List<O> map(List<I> data, SerializableFunction<I, O> func, int parallelism) {
return data.stream().parallel().map(func::apply).collect(Collectors.toList());
}
注:map 函数中抛出的异常,可以通过包装 SerializableFunction func 解决.
这里简要介绍下 SerializableFunction:
本文系作者在时代Java发表,未经许可,不得转载。
如有侵权,请联系nowjava@qq.com删除。