正则表达式具有伟大技术发明的一切特点,它简单、优美、功能强大、妙用无穷。对于很多实际工作来讲,正则表达式简直是灵丹妙药,能够成百倍地提高开发效率和程序质量。
以下都是惰性匹配
{m,n}?
{m,}?
??
+?
*?
以下是来自摘自维基百科的部分解释:
回溯法是一种通用的计算机算法,用于查找某些计算问题的所有(或某些)解决方案,特别是约束满足问题,逐步构建候选解决方案,并在确定候选不可能时立即放弃候选("回溯")完成有效的解决方案。
回溯法通常用最简单的递归方法来实现,在反复重复上述的步骤后可能出现两种情况:
在最坏的情况下,回溯法会导致一次复杂度为指数时间的计算。
正则引擎主要可以分为两大类:一种是 DFA(Deterministic finite automaton 确定型有穷自动机),另一种是 NFA(NFA Non-deterministic finite automaton 非确定型有穷自动机)。NFA 速度较 DFA 更慢,并且实现复杂,但是它又有着比 DFA 强大的多的功能,比如支持反向引用等。像 javaScript、java、php、python、c#等语言的正则引擎都是 NFA 型,NFA 正则引擎的实现过程中使用了回溯。
举一个网上常见的例子,正则表达式/ab{1,3}c/g 去匹配文本'abbc',我们接下来会通过 RegexBuddy 分析其中的匹配过程,后续的一个章节4,有关于 RegexBuddy 的使用介绍。
可以先下载一下:下载及获取 RegexBuddy
如上图所示,让我们一步一步分解匹配过程:
在这之中,匹配过程都很顺利,并没发生意外(回溯)。
让我们把上面的正则修改一下,/ab{1,3}c/g 改成/ab{1,3}bc/g,接下再通过 RegexBuddy 查看分析结果。
我们再一步一步分解匹配过程:
以上,就是一个简单的回溯过程。
从上面发生正则回溯的例子可以看出来,正则回溯的过程就是一个试错的过程,这也是回溯算法的精髓所在。回溯会增加匹配的步骤,势必会影响文本匹配的性能,所以,要想提升正则表达式的匹配性能,了解回溯出现的场景(形式)是非常关键的。
在 NFA 正则引擎中,量词默认都是贪婪的。当正则表达式中使用了下表所示的量词,正则引擎一开始会尽可能贪婪的去匹配满足量词的文本。当遇到匹配不下去的情况,就会发生回溯,不断试错,直至失败或者成功。
ble data-draft-node="block" data-draft-type="table" data-size="normal" data-row-style="normal">
当多个贪婪量词挨着存在,并相互有冲突时,秉持的是"先到先得"的原则,如下所示:
let string = "12345";
let regex = /(\d{1,3})(\d{1,3})/;
console.log( string.match(regex) );
// => ["12345", "123", "45", index: 0, input: "12345"]
贪婪是导致回溯的重要原因,那我们尽量以懒惰匹配的方式去匹配文本,是否就能避免回溯了呢?答案是否定的。
让我们还是看回最初的例子,/ab{1,3}c/g 去匹配 abbc。接下来,我们再把正则修改一下,改成/ab{1,3}?c/g 去匹配 abbc,以懒惰匹配的方式去匹配文本,RegexBuddy 执行步骤如下图所示:
本来是好端端不会发生回溯的正则,因为使用了惰性量词进行懒惰匹配后,反而产生了回溯了。所以说,惰性量词也不能瞎用,关键还是要看场景。
分支的匹配规则是:按照分支的顺序逐个匹配,当前面的分支满足要求了,则舍弃后面的分支。
举个简单的分支栗子,使用正则表达式去匹配 /abcde|abc/g 文本 abcd,还是通过 RegexBuddy 查看执行步骤:
由此,可以看出,分组匹配的过程,也是个试错的过程,中间是可能产生回溯的。
RegexBuddy 是个十分强大的正则表达式学习、分析及调试工具。RegexBuddy 支持 C++、Java、JavaScript、Python 等十几种主流编程语言。通过 RegexBuddy,能看到正则一步步创建的过程。结合测试文本,你能看到正则一步步执行匹配的过程,这对于理解正则回溯和对正则进行进一步优化,都有极大的帮助。
下载完后,一步步点击安装即可。
下图便是 RegexBuddy 界面的各个面板及相关功能。
为了方便使用,可以在布局设置那里将布局设置成 Side by Side Layout。
在正则输入区输入你的正则 regex1,查看 Create 面板,就会发现面板上显示了正则的创建过程(或者说是匹配规则),在 Test 面板区域输入你的测试文本,满足 regex1 匹配规则的部分会高亮显示,如下图所示。
选中测试文本,点击 debug 就可以进入 RegexBuddy 的 debug 模式,个人觉得这是 RegexBuddy 最强大地方,因为它可以让你清楚地知道你输入的正则对测试文本的匹配过程,执行了多少步,哪里发生了回溯,哪里需要优化,你都能一目了然。
RegexBuddy 的正则库内置了很多常用正则,日常编码过程中需要的很多正则表达式都能在该正则库中找到。
正则是个很好用的利器,如果使用得当,如有神助,能省掉大量代码。当如果使用不当,则是处处埋坑。所以,本章节的重点就是总结如何写一个高性能的正则表达式。
举个简单的例子对比:
我们使用正则表达式/a*b/去匹配字符串 aaaaa,看下图 RegexBuddy 的执行过程:
我们将以上正则修改成/(a*)*b/去匹配字符串 aaaaa,再看看 RegexBuddy 的执行结果过程:
以上两个正则的基本执行步骤可以简单认为是:
但令人惊奇的是,第一个正则的从开始匹配到匹配失败这个过程只有 14 步。而第二个正则却有 128 步之多。可想而知,嵌套量词会大大增加正则的执行过程。因为这其中进行了两层回溯,这个执行步骤增加的过程就如同算法复杂度从 O(n)上升到 O(n^2)的过程一般。
所以,面对量词嵌套,我们需作出适当的转化消除这些嵌套:
(a*)* <=> (a+)* <=> (a*)+ <=> a*
(a+)+ <=> a+
NFA 正则引擎中的括号主要有两个作用:
反向引用这个功能很强大,强大的代价是消耗性能。所以,当我们如果不需要用到括号反向引用的功能时,我们应该尽量使用非捕获组,也就是:
// 捕获组与非捕获组
() => (?:)
本文系作者在时代Java发表,未经许可,不得转载。
如有侵权,请联系nowjava@qq.com删除。