随着互联网的发展进入下半场,数据的时效性对企业的精细化运营越来越重要, 商场如战场,在每天产生的海量数据中,如何能实时有效的挖掘出有价值的信息, 对企业的决策运营策略调整有很大帮助。此外,随着 5G 技术的成熟、广泛应用, 对于工业互联网、物联网等数据时效性要求非常高的行业,企业就更需要一套完整成熟的实时数据体系来提高自身的行业竞争力。
本文从上述现状及实时数据需求出发,结合工业界案例、笔者的实时数据开发经验, 梳理总结了实时数据体系建设的总体方案,本文主要分为三个部分:
第一部分主要介绍了当下在工业界比较火热的实时计算引擎 Flink 在实时数据体系建设过程中主要的应用场景及对应解决方案;
第二部分从实时数据体系架构、实时数据模型分层、实时数据体系建设方式、流批一体实时数据架构发展等四个方面思考了实时数据体系的建设方案;
第三部分则以一个具体案例介绍如何使用 Flink SQL 完成实时数据统计类需求。
目前看来,Flink 在实时计算领域内的主要应用场景主要可分为四类场景, 分别是实时数据同步、流式 ETL、实时数据分析和复杂事件处理,具体的业务场景和对应的解决方案可详细研究下图, 文字层面不再详述。
实时数据体系大致分为三类场景:流量类、业务类和特征类,这三种场景各有不同。
整个实时数据体系架构分为五层,分别是接入层,存储层,计算层、平台层和应用层,上图只是整体架构的概要图,每一层具体要做的事情,接下来通过文字来详述。
其中,平台层详细工作如下:
平台监控部分一是对任务运行状态进行监控,对异常的任务进行报警并根据设定的参数对任务进行自动拉起与恢复,二是针对 Flink 任务要对 Kafka 消费处理延迟进行监控并实时报警。
数据据监控则分为两个部分,首先流式 ETL 是整个实时数据流转过程中重要的一环,ETL 的过程中会关联各种维表,实时关联时,定时对没有关联上的记录上报异常日志到监控平台,当数量达到一定阈值时触发报警, 其次,部分关键实时指标采用了 lambda 架构,因此需要对历史的实时指标与离线 hive 计算的数据定时做对比,提供实时数据的数据质量监控,对超过阈值的指标数据进行报警。
为了配合数据监控,需要做实时数据血缘,主要是梳理实时数据体系中数据依赖关系,以及实时任务的依赖关系,从底层ODS 到 DW 再到 DM,以及 DM 层被哪些模型用到, 将整个链条串联起来,这样做在数据/任务主动调整时可以通知关联的下游,指标异常时借助血缘定位问题,同时基于血缘关系的分析,我们也能评估数据的应用价值,核算数据的计算成本。
离线数仓考虑到效率问题,一般会采取空间换时间的方式,层级划分会比较多;实时数仓考虑到实时性问题,分层则越少越好,另外也减少了中间流程出错的可能性,因此将其分为四层。
■ DWD 层:
■ DIM 层:
以数据域+业务域的理念建设公共汇总层,对于DM层比较复杂,需要综合考虑对于数据落地的要求以及具体的查询引擎来选择不同的存储方式,分为轻度汇总层和高度汇总层,同时产出,高度汇总层数据用于前端比较简单的KV查询, 提升查询性能,比如实时大屏,实时报表等,数据的时效性要求为秒级,轻度汇总层Kafka中宽表实时写入OLAP存储引擎,用于前端产品复杂的OLAP查询场景,满足自助分析和产出复杂报表的需求,对数据的时效性要求可容忍到分钟级;
总体来说 DM 层对外提供三种时效性的数据:
首先是 Flink 等实时计算引擎预计算好的秒级实时指标,这种需求对数据的时效性要求非常高,用于实时大屏、计算维度不复杂的实时报表需求。
其次是 Spark SQL 预计算的延迟在分钟级的准实时指标, 该类指标满足一些比较复杂但对数据时效性要求不太高的数据分析场景,可能会涉及到多个事实表的join,如销售归因等需求。
最后一种则是不需要预计算,ad-hoc查询的复杂多维数据分析场景,此类需求比较个性化,灵活性比较高,如果 OLAP 计算引擎性能足够强大,也可完全满足秒级计算需求的场景; 对外提供的秒级实时数据和另外两种准实时数据的比例大致为 3:7,绝大多数的业务需求都优先考虑准实时计算或 ad-hoc 方式,可以降低资源使用、提升数据准确性,以更灵活的方式满足复杂的业务场景。
整个实时数据体系分为两种建设方式,即实时和准实时(它们的实现方式分别是基于流计算引擎和 ETL、OLAP 引擎,数据时效性则分别是秒级和分钟级。
从1990年 Inmon 提出数据仓库概念到今天,大数据架构经历了从最初的离线大数据架构、Lambda 架构、Kappa 架构以及 Flink 的火热带出的流批一体架构,数据架构技术不断演进,本质是在往流批一体的方向发展,让用户能以最自然、最小的成本完成实时计算。
为了应对业务方更复杂的多维实时数据分析需求,笔者目前在数据开发中引入 Kudu这个 OLAP 存储引擎,对订单等业务数据使用 Presto + Kudu 的计算方案也是在探索流批一体架构在实时数据分析领域的可行性。此外,目前比较热的数据湖技术,如 Delta lake、Hudi 等支持在 HDFS 上进行 upsert 更新,随着其流式写入、SQL 引擎支持的成熟,未来可以用一套存储引擎解决实时、离线数据需求,从而减少多引擎运维开发成本。
上一部分从宏观层面介绍了如何建设实时数据体系,非常不接地气,可能大家需要的只是一个具体的 case 来了解一下该怎么做,那么接下来用一个接地气的案例来介绍如何实时计算 UV 数据。大家都知道,在 ToC 的互联网公司,UV 是一个很重要的指标,对于老板、商务、运营的及时决策会产生很大的影响,笔者在电商公司,目前主要的工作就是计算 UV、销售等各类实时数据,体验就特别深刻, 因此就用一个简单demo 演示如何用 Flink SQL 消费 Kafka 中的 PV 数据,实时计算出 UV 指标后写入 Hbase。
PV 数据来源于埋点数据经 FileBeat 上报清洗后,以 ProtoBuffer 格式写入下游 Kafka,消费时第一步要先反序列化 PB 格式的数据为 Flink 能识别的 Row 类型,因此也就需要自定义实现 DeserializationSchema 接口,具体如下代码, 这里只抽取计算用到的 PV 的 mid、事件时间 time_local,并从其解析得到 log_date 字段:
public class PageViewDeserializationSchema implements DeserializationSchema<Row> {
public static final Logger LOG = LoggerFactory.getLogger(PageViewDeserializationSchema.class);
protected SimpleDateFormat dayFormatter;
private final RowTypeInfo rowTypeInfo;
public PageViewDeserializationSchema(RowTypeInfo rowTypeInfo){
dayFormatter = new SimpleDateFormat("yyyyMMdd", Locale.UK);
this.rowTypeInfo = rowTypeInfo;
}
@Override
public Row deserialize(byte[] message) throws IOException {
Row row = new Row(rowTypeInfo.getArity());
MobilePage mobilePage = null;
try {
mobilePage = MobilePage.parseFrom(message);
String mid = mobilePage.getMid();
row.setField(0, mid);
Long timeLocal = mobilePage.getTimeLocal();
String logDate = dayFormatter.format(timeLocal);
row.setField(1, logDate);
row.setField(2, timeLocal);
}catch (Exception e){
String mobilePageError = (mobilePage != null) ? mobilePage.toString() : "";
LOG.error("error parse bytes payload is {}, pageview error is {}", message.toString(), mobilePageError, e);
}
return null;
}
将 PV 数据解析为 Flink 的 Row 类型后,接下来就很简单了,编写主函数,写 SQL 就能统计 UV 指标了,代码如下:
本文系作者在时代Java发表,未经许可,不得转载。
如有侵权,请联系nowjava@qq.com删除。