理论上并行和语言并没有什么关系,所以在理论上的并行方式,都可以尝试用Rust来实现。本小节不会详细全面地介绍具体的并行理论知识,只介绍用Rust如何来实现相关的并行模式。Rust的一大特点是,可以保证“线程安全”。而且,没有性能损失。
同步指的是线程之间的协作配合,以共同完成某个任务。在整个过程中,需要注意两个关键点:一是共享资源的访问, 二是访问资源的顺序。通过前面的介绍,我们已经知道了如何让多个线程访问共享资源,但并没介绍如何控制访问顺序,才不会出现错误。
在消息传递之外,还存在一种广为人知的并发模型,那就是共享内存。其实如果不能共享内存,消息传递也是不能在不同的线程间传递消息,也谈不上在不同的线程间等待和通知了。共享内存是这一切得以发生的基础。如果查看源码,你会发现消息传递的内部实现就是借用了共享内存机制。
稍加考虑,上一节的练习题其实是不完整的,它只是评分系统中的一环,一个评分系统是需要先把信息从数据库或文件中读取出来,然后才是评分,最后还需要把评分结果再保存到数据库或文件中去。如果一步一步串行地做这三个步骤,是完全没有问题的。那么我们是否可以用三个线程来分别做这三个步骤呢?
并发是什么?引用Rob Pike的经典描述:并发是同一时间应对多件事情的能力其实在我们身边就有很多并发的事情,比如一边上课,一边发短信;一边给小孩喂奶,一边看电视,只要你细心留意,就会发现许多类似的事。相应地,在软件的世界里,我们也会发现这样的事,比如一边写博客,一边听音乐;一边看网页,一边下载软件等等。显而易见这样会节约不少时间,干更多的事。
本章讲解 Rust 中,并发,并行,多线程编程的相关知识。
std::marker 模块中,有两个 trait:Send 和 Sync,它们与多线程安全相关。标记为 marker trait 的 trait,它实际就是一种约定,没有方法的定义,也没有关联元素(associated items)。仅仅是一种约定,实现了它的类型必须满足这种约定。一种类型是否加上这种约定,要么是编译器的行为,要么是人工手动的行为。
直译为奶牛!开玩笑。Cow 是一个枚举类型,通过 use std::borrow::Cow; 引入。它的定义是 Clone-on-write,即写时克隆。本质上是一个智能指针。它有两个可选值:Borrowed,用于包裹对象的引用(通用引用);Owned,用于包裹对象的所有者;Cow 提供对此对象的不可变访问(比如可直接调用此对象原有的不可变方法);
Deref 是 deref 操作符 * 的 trait,比如 *v。一般理解,*v 操作,是 &v 的反向操作,即试图由资源的引用获取到资源的拷贝(如果资源类型实现了 Copy),或所有权(资源类型没有实现 Copy)。Rust 中,本操作符行为可以重载。这也是 Rust 操作符的基本特点。本身没有什么特别的。
Borrowuse std::borrow::Borrow;Borrow 提供了一个方法 .borrow()。对于一个类型为 T 的值 foo,如果 T 实现了 Borrow<U>,那么,foo 可执行 .borrow() 操作,即 foo.borrow()。操作的结果,我们得到了一个类型为 &U 的新引用。Borrow 可以认为是 AsRef 的严格版本,它对普适引用操作的前后类型之间附加了一些其它限制。
std::convert 下面,还有另外两个 Trait,AsRef/AsMut,它们功能是配合泛型,在执行引用操作的时候,进行自动类型转换。这能够使一些场景的代码实现得清晰漂亮,大家方便开发。AsRefAsRef 提供了一个方法 .as_ref()。对于一个类型为 T 的对象 foo,如果 T 实现了 AsRef<U>,那么,foo 可执行 .as_ref() 操作,即 foo.as_ref()。
std::convert 下面,有两个 Trait,Into/From,它们是一对孪生姐妹。它们的作用是配合泛型,进行一些设计上的归一化处理。它们的基本形式为: From<T> 和 Into<T>。From对于类型为 U 的对象 foo,如果它实现了 From<T>,那么,可以通过 let foo = U::from(bar) 来生成自己。这里,bar 是类型为 T 的对象。下面举一例,因为 String 实现了 From<&
本章讲解 Rust 类型系统中的几个常见 trait。有 Into, From, AsRef, AsMut, Borrow, BorrowMut, ToOwned, Deref, Cow。
前面我们提到,Rust 通过其所有权机制,严格控制拥有和借用关系,来保证程序的安全,并且这种安全是在编译期可计算、可预测的。但是这种严格的控制,有时也会带来灵活性的丧失,有的场景下甚至还满足不了需求。因此,Rust 标准库中,设计了这样一个系统的组件:Cell, RefCell,它们弥补了 Rust 所有权机制在灵活性上和某些场景下的不足。同时,又没有打破 Rust 的核心设计。
MutexMutex 意为互斥对象,用来保护共享数据。Mutex 有下面几个特征:Mutex 会等待获取锁令牌(token),在等待过程中,会阻塞线程。直到锁令牌得到。同时只有一个线程的 Mutex 对象获取到锁;Mutex 通过 .lock() 或 .try_lock() 来尝试得到锁令牌,被保护的对象,必须通过这两个方法返回的 RAII 守卫来调用,不能直接操作;当 RAII 守卫作用域结束后,锁会自动解开;
Rust 建立在所有权之上的这一套机制,它要求一个资源同一时刻有且只能有一个拥有所有权的绑定或 &mut 引用,这在大部分的情况下保证了内存的安全。但是这样的设计是相当严格的,在另外一些情况下,它限制了程序的书写,无法实现某些功能。因此,Rust 在 std 库中提供了额外的措施来补充所有权机制,以应对更广泛的场景。
本章讲解 Rc, Arc, Mutex, RwLock, Cell, RefCell 的知识和使用方法。
简介堆和栈是计算机里面最基本的概念,不过如果一直使用高级语言如 Python/Ruby/PHP/Java 等之类的语言的话,可能对堆和栈并不怎么理解,当然这里的栈(Stack)并不是数据结构里面的概念,而是计算机对内存的一个抽象。
简介学过 C 语言的人都知道 #define 用来定义宏(macro),而且大学很多老师都告诉你尽量少用宏,因为 C 里面的宏是一个很危险的东西-宏仅仅是简单的文本替换,完全不管语法,类型,非常容易出错。听说过或用过 Lisp 的人觉得宏极其强大,就连美国最大的创业孵化器公司创始人 Paul Gram 也极力鼓吹 Lisp 的宏是有多么强大。那么宏究竟是什么样的东西呢?
回顾一下我们写的第一个 Rust 程序就是带副作用的,其副作用就是向标准输出(stdout),通常是终端或屏幕,输出了 Hello, World! 让屏幕上这几个字符的地方点亮起来。println! 宏是最常见的输出,用宏来做输出的还有 print!,两者都是向标准输出(stdout)输出,两者的区别也一眼就能看出。至于格式化输出,基础运算符和字符串格式化小节有详细说明,这里就不再啰嗦了。
关注时代Java