全面理解推荐系统的数据、算法、架构。

一、推荐算法的理解

如果说互联网的目标就是连接一切,那么推荐系统的作用就是建立更加有效率的连接,推荐系统可以更有效率的连接用户与内容和服务,节约了大量的时间和成本。

如果把推荐系统简单拆开来看,推荐系统主要是由数据、算法、架构三个方面组成。

  • 数据提供了信息。数据储存了信息,包括用户与内容的属性,用户的行为偏好例如对新闻的点击、玩过的英雄、购买的物品等等。这些数据特征非常关键,甚至可以说它们决定了一个算法的上限。
  • 算法提供了逻辑。数据通过不断的积累,存储了巨量的信息。在巨大的数据量与数据维度下,人已经无法通过人工策略进行分析干预,因此需要基于一套复杂的信息处理逻辑,基于逻辑返回推荐的内容或服务。
  • 架构解放了双手。架构保证整个推荐自动化、实时性的运行。架构包含了接收用户请求,收集、处理,存储用户数据,推荐算法计算,返回推荐结果等。有了架构之后算法不再依赖于手动计算,可以进行实时化、自动化的运行。例如在淘宝推荐中,对于数据实时性的处理,就保证了用户在点击一个物品后,后续返回的推荐结果就可以立刻根据该点击而改变。一个推荐系统的实时性要求越高、访问量越大那么这个推荐系统的架构就会越复杂。

二、推荐系统的整体框架

推荐的框架主要有以下几个模块

  • 协议调度:请求的发送和结果的回传。在请求中,用户会发送自己的 ID,地理位置等信息。结果回传中会返回推荐系统给用户推荐的结果。
  • 推荐算法:算法按照一定的逻辑为用户产生最终的推荐结果。不同的推荐算法基于不同的逻辑与数据运算过程。
  • 消息队列:数据的上报与处理。根据用户的 ID,拉取例如用户的性别、之前的点击、收藏等用户信息。而用户在 APP 中产生的新行为,例如新的点击会储存在存储单元里面。
  • 存储单元:不同的数据类型和用途会储存在不同的存储单元中,例如内容标签与内容的索引存储在 mysql 里,实时性数据存储在 redis 里,需要进行数据统计的数据存储在 TDW 里。

三、用户画像

3.1 用户标签

标签是我们对多维事物的降维理解,抽象出事物更具有代表性的特点。 我们永远无法完全的了解一个人,所以我们只能够通过一个一个标签的来刻画他,所有的标签最终会构建为一个立体的画像,一个详尽的用户画像可以帮助我们更加好的理解用户。

3.2 用户画像的分类

1. 原始数据

原始数据一共包含四个方面

  • 用户数据: 例如用户的性别、年龄、渠道、注册时间、手机机型等。
  • 内容数据: 例如游戏的品类,对游戏描述、评论的爬虫之后得到的关键词、标签等。
  • 用户与内容的交互: 基于用户的行为,了解了什么样的用户喜欢什么样的游戏品类、关键词、标签等。
  • 外部数据: 单一的产品只能描述用户的某一类喜好,例如游戏的喜好、视频的喜好,外部数据标签可以让用户更加的立体。

2. 事实标签

事实标签可以分为静态画像和动态画像。

  • 静态画像: 用户独立于产品场景之外的属性,例如用户的自然属性,这类信息比较稳定,具有统计性意义。
  • 动态画像: 用户在场景中所产生的显示行为或隐式行为。
  • 显示行为:用户明确的表达了自己的喜好,例如点赞、分享、关注、评分等。(评论的处理更加复杂,需要通过 NLP 的方式来判断用户的感情是正向、负向、中性)。
  • 隐式行为:用户没有明确表达自己的喜好,但“口嫌体正直”,用户会用实际行动,例如点击、停留时长等隐性的行为表达自己的喜好。

隐式行为的权重往往不会有显示行为大,但是在实际业务中,用户的显示行为都是比较稀疏的,所以需要依赖大量的隐式行为。

3. 模型标签

模型标签是由事实标签通过加权计算或是聚类分析所得。通过一层加工处理后,标签所包含的信息量得到提升,在推荐过程中效果更好。

  • 聚类分析: 例如按照用户的活跃度进行聚类,将用户分为高活跃-中活跃-低活跃三类。
  • 加权计算: 根据用户的行为将用户的标签加权计算,得到每一个标签的分数,用于之后推荐算法的计算。

四、内容画像

内容画像: 例如对于文章中的新闻资讯类推荐,需要利用 NLP 的技术对文章的标题,正文等等提取关键词、找到对应的标签等。视频除了对于分类、标题关键词的抓取外,还依赖于图片处理的技术。因此在推荐前需要对推荐的商品或内容进行一系列的处理过程。

环境变量: 对于推荐系统来说,环境画像也非常的重要。例如在短视频的推荐场景中,用户在看到一条视频所处的时间、地点以及当时所浏览的前后内容、当天已浏览时间等是非常重要的变量。

推荐内容与场景通常可以分为以下几类

五、算法构建

5.1 推荐算法流程

推荐算法其实本质上是一种信息处理逻辑,当获取了用户与内容的信息之后,按照一定的逻辑处理信息后,产生推荐结果。热度排行榜就是最简单的一种推荐方法,它依赖的逻辑就是当一个内容被大多数用户喜欢,那大概率其他用户也会喜欢。但是基于粗放的推荐往往会不够精确,想要挖掘用户个性化的,小众化的兴趣,需要制定复杂的规则运算逻辑,并由机器完成。

推荐算法主要分为以下几步:

  • 召回:当用户以及内容量比较大的时候,往往先通过召回策略,将百万量级的内容先缩小到百量级。
  • 过滤:对于内容不可重复消费的领域,例如实时性比较强的新闻等,在用户已经曝光和点击后不会再推送到用户面前。
  • 精排:对于召回并过滤后的内容进行排序,将百量级的内容并按照顺序推送。
  • 混排:为避免内容越推越窄,将精排后的推荐结果进行一定修改,例如控制某一类型的频次。
  • 强规则:根据业务规则进行修改,例如在活动时将某些文章置顶。

  • 例如在抖音与快手的分发中:抖音强平台基于内容质量分发,快手轻平台基于社交和兴趣分发,抖音:内容质量>关系>双向互动。快手:内容质量 约等于 关系 > 双向互动。抖音基于将内容从小流量开始,其中表现优质的内容将不断的进入更大的流量池中,最终进入推荐池,形成 90 天+精品召回池,最终的结果也是优质内容的热度随着时间推移逐渐累积增加,头部内容的集中度很高。

来源:方正证券《抖音 vs 快手深度复盘与前瞻-短视频 130 页分析框架》

5.2 召回策略

  • 召回的目的:当用户与内容的量级比较大,例如对百万量级的用户与内容计算概率,就会产生百万*百万量级的计算量。但同时,大量内容中真正的精品只是少数,对所有内容进行一次计算将非常的低效,会浪费大量的资源和时间。因此采用召回策略,例如热销召回,召回一段时间内最热门的 100 个内容,只需进行一次计算动作,就可以对所有用户应用。
  • 召回的重要性:虽然精排模型一直是优化的重点,但召回模型也非常的重要,因为如果召回的内容不对,怎么精排都是错误的。
  • 召回方法:召回的策略不应该是简单的策略堆砌,而应该是方法的相互补充。
  1. 热销召回:将一段时间内的热门内容召回。
  2. 协同召回:基于用户与用户行为的相似性推荐,可以很好的突破一定的限制,发现用户潜在的兴趣偏好。
  3. 标签召回:根据每个用户的行为,构建标签,并根据标签召回内容。
  4. 时间召回:将一段时间内最新的内容召回,在新闻视频等有时效性的领域常用。是常见的几种召回方法。

5.3 精排策略

5.3.1 精排模型

  • 精排模型的不同类别

  • 精排模型的基本原理

5.3.2 Model-based 精排模型——逻辑回归为例

  • 原理介绍

1.概念:逻辑回归通过 sigmoid 函数,将线性回归变为可以解决二分类的方法,它可用于估计某种事物发生的可能性。

2.计算公式**:**Y 根据目标设计:例如是否点击(是:1,否:0,最后预测一个 0-1 之间的点击概率);X 根据特征工程设计:这一块就涉及到了前面提到的用户画像与内容画像,所有的画像都是对样本的特征的刻画。特征工程需要根据业务场景选择合适的特征并进行一定的加工;W 由模型训练得到。

  • 构建流程

基于我们的目标,需要进行样本的收集(样本是对客观世界的具体描述),通过对已收集到的样本进行特征构造,并对其进行训练,最终求出模型参数的具体数值。

  1. 建立样本

逻辑回归为有监督模型,因此需要有已经分类好的样本。正样本:用户曝光过某物品并点击。负样本:用户曝光过某物品并且没有点击。如果正负样本差距过大,可以将负样本随机抽样后与正样本一起训练。或只保留有点击行为的用户作为样本,将曝光但是没有被点击的物品作为负样本。

  1. 特征工程

特征工程是对收集到的样本进行更加深度的特征刻画。虽然作为算法人员与用户接触较少,但对身边使用该产品的同学,进行深入的观察与访谈,了解他们对于所推荐内容的反馈,往往可以得到意料之外的特征开发方向。主要分为以下几个维度。

  • 基础数据
  • 趋势数据
  • 时间数据
  • 交叉数据

不同交叉方法得到的不同的参数数量

5.4 其他

拓展阅读:

Learning and Reasoning on Graph for Recommendation

http://staff.ustc.edu.cn/~hexn/slides/cikm19-tutorial-graph-rec.pdf

Concept to Code:Deep Learning for Multitask Recommendation

https://drive.google.com/file/d/1YDSuPI-DBWSn-QeCK8zTa75iBsq-kaRx/view

6 算法衡量标准

6.1 算法衡量指标

  • 硬指标:对于大多数的平台而言,推荐系统最重要的作用是提升一些“硬指标”。例如新闻推荐中的点击率,但是如果单纯以点击率提升为目标,最后容易成为一些低俗内容,“标题党”的天下。
  • 软指标:除了“硬指标”,推荐系统还需要很多“软指标”以及“反向指标”来衡量除了点击等之外的价值。好的推荐系统能够扩展用户的视野,发现那些他们感兴趣,但是不会主动获取的内容。同时推荐系统还可以帮助平台挖掘被埋没的优质长尾内容,介绍给感兴趣的用户。

6.2 获得推荐效果

如何去获得推荐效果。可以分为离线实验、用户调查、在线实验三种方法。

展开阅读全文

本文系作者在时代Java发表,未经许可,不得转载。

如有侵权,请联系nowjava@qq.com删除。

编辑于

关注时代Java

关注时代Java